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We derive the Hamiltonian for trilayer moiré systems with the Coulomb interaction projected onto the bands
near the charge neutrality point. Motivated by the latest experimental results, we focus on the twisted symmetric
trilayer graphene (TSTG) with a mirror symmetry with respect to the middle layer. We provide a full symmetry
analysis of the noninteracting Hamiltonian with a perpendicular displacement field coupling the band structure
made otherwise of the twisted bilayer graphene (TBG) and the high-velocity Dirac fermions, and we identify a
hidden nonlocal symmetry of the problem. In the presence of this displacement field, we construct an approx-
imate single-particle model, akin to the tripod model for TBG, capturing the essence of noninteracting TSTG.
We also derive more quantitative perturbation schemes for the low-energy physics of TSTG with displacement
field, obtaining the corresponding eigenstates. This allows us to obtain the Coulomb interaction Hamiltonian
projected in the active band TSTG wave functions and derive the full many-body Hamiltonian of the system.
We also provide an efficient parametrization of the interacting Hamiltonian. Finally, we show that the discrete
symmetries at the single-particle level promote the U(2) × U(2) spin-valley symmetry to enlarged symmetry
groups of the interacting problem under different limits. The interacting part of the Hamiltonian exhibits a large
U(4) × U(4) × U(4) × U(4) symmetry in the chiral limit. Moreover, by identifying a symmetry which we dub
spatial many-body charge conjugation, we show that the physics of TSTG is symmetric around charge neutrality.
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I. INTRODUCTION

As a result of its chemical versatility, an impressive number
of stable carbon allotropes have been synthesized and inves-
tigated. One of the newest additions to the family, twisted
bilayer graphene (TBG), has generated a lot of excitement in
the condensed matter community. The resulting van der Waals
heterostructure obtained by stacking two graphene layers with
a small relative twist has been theoretically shown to host flat
bands at certain so-called magic angles [1–3]. Subsequent ex-
perimental studies have revealed various correlated insulating
and superconducting phases in TBG near the first magic angle
θTBG ≈ 1.05◦, using both transport [4–17] and spectroscopy
[18–25] experiments. In turn, these findings have inspired a
wealth of theoretical investigations into the rich physics of
TBG [26–107].

Such progress on both the experimental and theoretical
fronts has triggered a large effort into extending the family
of moiré superlattices, promoting them as some of the most
promising platforms to engineer strongly correlated quan-
tum phases [108]. The main driving force in investigating
moiré materials beyond TBG is often the different band
tunability properties of the former. Consequently, the exten-
sion to twisted multilayer graphene has already been widely
studied theoretically [40,109–127]. Later experiments have

*These authors contributed equally to this work.

also revealed equally intriguing superconducting and insu-
lating phases in moiré systems with three [128–135] or four
[109,136–139] graphene layers.

Among the simplest moiré graphene systems beyond TBG,
twisted symmetric trilayer graphene (TSTG) [116,121] has
been recently experimentally realized in Refs. [131,132].
TSTG is comprised of three AAA-stacked graphene layers
in which the middle layer is twisted slightly relative to the
top and bottom ones. For this type of stacking, which was
shown to be energetically favorable [111], the system is mir-
ror symmetric with respect to reflections in the plane of
the middle graphene layer. As such, TSTG decouples into
mirror-symmetry sectors in the absence of interactions [116]
and can be thought of as being comprised of a “TBG-like”
contribution with an interlayer coupling effectively enhanced
by a factor of

√
2 [116], and a high-velocity Dirac fermion

[111]. The renormalized interlayer coupling of the TBG
fermions leads to a rescaling of the first magic angle by
the same amount, yielding θTSTG ≈ 1.56◦ in agreement with
the recent experimental observations [131,132]. However,
despite being independent at the single-particle level, the
two mirror-symmetry sectors of TSTG are coupled by the
electron-electron interactions, pointing to a potentially richer
correlated physics compared to TBG. Moreover, the TBG and
Dirac cone contributions can be hybridized by the application
of a perpendicular displacement field [111,117,131,132]. This
provides another knob to experimentally tune the TSTG band
structure.
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To unveil the above-mentioned richness, we here investi-
gate both the single-particle Bistritzer-MacDonald model and
the interaction Coulomb Hamiltonian for TSTG at the first
magic angle, with or without displacement field. The main re-
sult of this paper is to derive expressions and effective models,
as well as the symmetries of the interacting TSTG Hamil-
tonian under different limits. For this purpose, we discuss
the discrete symmetries of the single-particle problem and
show how they promote the U(2) × U(2) valley-spin rotation
symmetry to enhanced rotation symmetries of the interacting
problem. We uncover nonlocal hidden symmetries of the sys-
tem at both the single-particle and many-body level. At the
same time, we also provide a series of approximations for the
single-particle energy spectrum of TSTG in the presence of
displacement field and show how it can be obtained in terms
of the TBG flat band wave functions, whose properties have
been extensively studied in Refs. [36,37,85,86]. Despite the
addition of a Dirac degree of freedom, we find the symmetries
of the many-body TSTG Hamiltonian to be enhanced from
those of TBG.

The paper is organized as follows. In Sec. II, we review the
single-particle TSTG Hamiltonian and derive a low-energy
approximation. We then investigate its symmetries (including
the hidden nonlocal symmetries) in Sec. III under various
limits with or without displacement field. Section IV focuses
on the single-particle energy spectrum. We show that an ap-
proximate tripod model correctly captures the salient features
of TSTG and we derive the single-particle projected Hamil-
tonian. Section V is devoted to the interacting Hamiltonian,
deriving the expression of the projected Coulomb interaction
for the TSTG model. Finally, we discuss in Sec. VI the sym-
metries of the fully interacting projected TSTG Hamiltonian
in several limits.

II. SINGLE-PARTICLE HAMILTONIAN

First, we outline the derivation of a Bistritzer-MacDonald
model for TSTG [3]. A more detailed exposition is provided
in Appendix A 1. The main result of this section is to show
that the TSTG Hamiltonian can be thought as a sum between
a TBG Hamiltonian (with renormalized interlayer hopping
amplitudes) and an independent Dirac cone Hamiltonian. Fur-
thermore, we show that the hybridization between the TBG
and Dirac cone fermions can be tuned by the addition of a
perpendicular displacement field [131,132].

A. Notations

In the case of graphene, the twisted trilayer geometry
was considered theoretically in Refs. [116,121]. Through-
out this paper, however, we will follow the notation of
Refs. [36–38,69,85,86,99]. We take â

†
p,α,s,l

to represent the
fermion operator in the plane-wave basis for graphene layer
l = 1, 2, 3 (corresponding to the bottom, middle, and top
layers, respectively). The momentum p is measured from
the Ŵ point of the monolayer graphene Brillouin zone (BZ),
as shown in Fig. 1(a), α = A, B is the sublattice index, and
s = ↑,↓ denotes the projection of the electron spin along
the ẑ direction. Within each graphene layer, the low-energy
physics is concentrated around the two valleys K and K ′,

FIG. 1. The Moiré lattice of TSTG. (a) Illustrates the BZs of the
graphene layers, which are plotted in blue for the top (l = 3) and
bottom (l = 1) layers and in orange for the middle layer (l = 2). The
K (K ′) point is located at K+ (−K+) for the top and bottom layers
and at K− (−K−). When the twist angle θ is small, an approximate
translation symmetry arises, allowing us to define the MBZ (dashed
black hexagon). The Q± lattices are shown in (b). Inside the first
MBZ (defined as the hexagonal region around ŴM ) we have plotted
the regions Ai

η defined in Eq. (9) as filled blue (η = +) and orange
(η = −) circular sectors.

labeled by η = ±1 and located at momenta ηKl . Owing to
the mirror-symmetric arrangement of the graphene layers, we
can introduce K+ ≡ K1 = K3 to be the K point in the bottom
and top layer graphene BZ (l = 1, 3), and K− ≡ K2, to be the
K point of the middle layer graphene BZ (l = 2).

For convenience, we define the momenta q j =
C

j−1
3z (K+ − K−), where j = 1, 2, 3 and C3z represents

the threefold rotation transformation around the ẑ axis. We
can then define a moiré BZ (MBZ) for the TSTG moiré lattice
Q0 = ZbM1 + ZbM2, which is generated by the reciprocal
vectors bMi = q3 − qi (i = 1, 2). We also define two shifted
momentum lattices Q± = ±q1 + Q0, which together form
a honeycomb lattice, as seen in Fig. 1(b). We can then
introduce the low-energy fermion operators defined on the
moiré lattice as â

†
k,Q,η,α,s,l

≡ â
†
ηKl +k−Q,α,s,l

for Q ∈ Qη,l with
k measured from the ŴM point, and Qη,l = Qη for l = 1, 3
and Qη,l = Q−η for l = 2.

The expression of the TSTG single-particle Hamiltonian in
terms of the â† operators given in Eq. (A10) of Appendix A 1
can be simplified by introducing a basis transformation: in the
absence of a perpendicular displacement field, a TSTG sample
is symmetric under mirror mz reflections with respect to the
middle graphene layer plane. This allows us to define a set of
mirror-symmetric and mirror-antisymmetric operators, which
are, respectively, given by

ĉ
†
k,Q,η,α,s

=

{ 1√
2
(â†

k,Q,η,α,s,3 + â
†
k,Q,η,α,s,1), Q ∈ Qη

â
†
k,Q,η,α,s,2, Q ∈ Q−η

(1)

and

b̂
†
k,Q,η,α,s

=
1

√
2

(â†
k,Q,η,α,s,3 − â

†
k,Q,η,α,s,1), Q ∈ Qη. (2)
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B. Hamiltonian

When written with the aid of the b̂† and ĉ† operators, the
single-particle Hamiltonian can be separated into three terms

Ĥ0 = ĤTBG + ĤD + ĤU . (3)

In Eq. (3), the mirror-symmetric low-energy operators give
rise to the term

ĤTBG =
∑

k∈MBZ
η, α, β, s

Q, Q′ ∈ Q±

[

h
(η)
Q,Q′ (k)

]

αβ
ĉ

†
k,Q,η,α,s

ĉk,Q′,η,β,s, (4)

which is similar to the ordinary TBG Hamiltonian [85,116],
but with a tunneling amplitude which is rescaled by a factor
of

√
2, corresponding to

h
(η)
Q,Q′ (k) = h

D,η

Q (k)δQ,Q′ +
√

2h
I,η

Q,Q′ . (5)

The first-quantized Hamiltonians h
D,η

Q (k) and h
I,η

Q,Q′ from
Eq. (5), whose exact forms are given in Appendix A 1, denote
a Dirac cone contribution with Fermi velocity vF folded inside
the first MBZ and an interlayer hopping term, respectively.
In particular, there are two parameters w0 and w1 in h

I,η

Q,Q′ ,
which correspond to the interlayer hoppings at the AA and
AB/BA stacking centers, respectively. Generically, one has
0 � w0 < w1 due to lattice relaxation and corrugation effects
[46,58,86,89,92]. At the same time, the mirror-symmetric op-
erators, which are only defined for Q ∈ Qη, correspond to a
solitary Dirac cone contribution

ĤD =
∑

k∈MBZ
η, α, β, s

∑

Q∈Qη

[hD,η

Q (k)]αβ b̂
†
k,Q,η,α,s

b̂k,Q,η,β,s. (6)

Additionally, in Eq. (3), we have introduced a perpendicular
displacement field, which is equivalent to an onsite poten-
tial of U/2, 0, −U/2 in the top, middle, and bottom layers,
respectively. The displacement field contribution couples the
TBG-like and the Dirac cone fermions giving rise to

ĤU =
∑

k∈MBZ
η, α, s

∑

Q∈Qη

U

2
(b̂†

k,Q,η,α,s
ĉk,Q,η,α,s + H.c.), (7)

which explicitly breaks the mirror mz symmetry. In what
follows, we will find it convenient to employ dimensionless
units in which momentum (k) and energy (E ) are rescaled
according to

k →
k

kθ

, E →
E

vF kθ

, (8)

where kθ = |K+ − K−|. This essentially amounts to setting
vF = 1, as well as |qi| = 1 (i = 1, 2, 3).

C. Low-energy approximation

The low-energy physics of TSTG with displacement field
near the magic angle arises from the interplay between the
almost flat (i.e., with a bandwidth much smaller than one, in
nondimensional units) bands of ĤTBG and the MBZ-folded
high-velocity Dirac cone bands of ĤD. The only states of
ĤD which can efficiently perturb and hybridize the flat-band

modes of the TBG-like sector are the ones which have an
energy significantly smaller than one. As a low-energy ap-
proximation, we can thus restrict ourselves to the momentum
points where |hD,η

Q (k)| ≪ 1 in Eq. (6), which is equivalent to
Q ∈ {ηqi} and k belonging to one of the three zones Ai

η (where
i = 1, 2, 3) defined for each valley η as

Ai
η = {k ∈ MBZ | |k − ηqi| � �}. (9)

Effectively, we consider the Dirac cone contribution in the
MBZ only within a small distance � from the Dirac points of
ĤD, as shown in Fig. 1(b). Typically, the cutoff � is smaller
than the gap between the TBG active and passive bands, but
bigger than the bandwidth of the flat bands of ĤTBG. For
0 � U � 0.3, we find that � � 0.2 (see Appendix D 2). With
these approximations, we can write the Dirac cone Hamilto-
nian projected into the low-energy degrees of freedom as

HD =
∑

η,α,β,s

3
∑

i=1

∑

k∈Ai
η

[

hD,η
ηqi

(k)
]

αβ
b̂

†
k,ηqi,η,α,s

b̂k,ηqi,η,β,s, (10)

which is denoted without the “hat” to distinguish it from the
unprojected ĤD.

III. SYMMETRIES OF THE SINGLE-PARTICLE

HAMILTONIAN

This section outlines the symmetries of the TSTG single-
particle Hamiltonian from Eq. (3). The reader is referred to
Appendix B for a more in-depth discussion. In the case of
zero displacement field, TSTG is symmetric under mirror
reflections with the mirror plane parallel to the graphene
layers, enabling us to discuss the symmetries of the system
for each independent mirror-symmetry sector. Finally, we
identify which symmetries of TSTG survive the hybridization
between the Dirac cone and TBG fermions in presence of the
applied displacement field.

A. Symmetry transformations

Due to its negligible spin-orbit coupling, single-layer
graphene admits a series of spinless symmetry transforma-
tions, some of which are inherited by the single-particle TSTG
Hamiltonian from Eq. (3). To keep the discussion general, we
can consider the action of these transformations on a generic
fermion operator f̂

†
k,Q,η,α,s

defined on the moiré lattice (where

f̂ † = b̂†, ĉ†). The unitary discrete symmetry transformations
C2z, C3z, and C2x, respectively, denote a twofold rotation
around the ẑ axis, a threefold rotation around the ẑ axis, and a
twofold rotation around the x̂ axis. Their action on the moiré
lattice fermion operators is given by

C2z f̂
†
k,Q,η,α,s

C−1
2z =

∑

β

(σx )βα f̂
†
−k,−Q,−η,β,s

,

C3z f̂
†
k,Q,η,α,s

C−1
3z =

∑

β

(eiη 2π
3 σz )βα f̂

†
C3zk,C3zQ,η,β,s

,

C2x f̂
†
k,Q,η,α,sC

−1
2x =

∑

β

(σx )βα f̂
†

C2xk,C2xQ,η,β,s. (11)
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We also introduce the spinless mirror symmetry mz acting
on the two fermion flavors as

mzĉ
†
k,Q,η,α,sm

−1
z = ĉ

†
k,Q,η,α,s,

mzb̂
†
k,Q,η,α,s

m−1
z = −b̂

†
k,Q,η,α,s

. (12)

Finally, we define the action of the spinless antiunitary time-
reversal operator

T f̂
†
k,Q,η,α,s

T −1 = f̂
†
−k,−Q,−η,α,s

. (13)

The above operators represent commuting symmetries of the
single-layer graphene Hamiltonian. In addition, there are three
useful transformations which give rise to anticommuting sym-
metries, reflecting a relation between the positive and negative
energy spectra of the Hamiltonians: a unitary particle-hole
symmetry P and two chiral transformations C and C′, the latter
two being only valid for different limits of the values of w0/w1

(respectively w0 = 0 and w1 = 0). Their action on the moiré
lattice fermions is given by

P f̂
†
k,Q,η,α,sP

−1 = ζQ f̂
†
−k,−Q,η,α,s,

C f̂
†
k,Q,η,α,s

C−1 = (σz )βα f̂
†
k,Q,η,β,s

,

C′ f̂
†
k,Q,η,α,s

C′−1 = ζQ(σz )βα f̂
†
k,Q,η,β,s

,

(14)

where ζQ = ±1 for Q ∈ Q±.

B. Symmetries in different limits

We now briefly outline the symmetries of the single-
particle Hamiltonian from Eq. (3). The reader can find a more
in-depth discussion in Appendix B. We will first consider the
case without displacement field and discuss the symmetries
of the system for each mirror-symmetry sector individually.
Finally, we will explore how the introduction of a nonzero U

breaks or preserves the various symmetries from the U = 0
case.

1. Symmetries in the U = 0 case

In the absence of displacement field, the Hamiltonian ĤTBG

is symmetric under C2z, C3z, C2x, mz, and T [85]. In compar-
ison, the mirror-antisymmetric sector ĤD has only the C2z,
C3z, mz, and T symmetries (i.e., it is not symmetric un-
der C2x). Each graphene layer has an SU(2) spin-rotational
symmetry, owing to the negligible spin-oribt coupling. In
conjunction with the charge U(1) symmetry of each graphene
valley, this leads to a U(2) × U(2) continuous symmetry
for each of the two Hamiltonians ĤD and ĤTBG. As the
two mirror-symmetry sectors are decoupled in the absence
of displacement field, this results in a flavor-valley-spin
[U(2) × U(2)]ĉ × [U(2) × U(2)]b̂ symmetry for Ĥ0 when
U = 0. Here and in what follows, we will always employ
[. . . ] f̂ to denote the continuous symmetry groups that act only

within a certain fermion flavor f̂ = b̂, ĉ.
Aside from the above commuting symmetries, the mirror-

symmetric sector Hamiltonian is particle-hole symmetric
[85,86]

{ĤTBG, P} = 0. (15)

For some parameter choices, it also has a chiral symme-
try: {ĤTBG,C} = 0, for w0 = 0 (the first chiral limit) or
{ĤTBG,C′} = 0, for w1 = 0 (the second chiral limit) [37,87].

In contrast, the mirror-antisymmetric sector Hamiltonian
is not particle-hole symmetric, but anticommutes with the
combined C2xP transformation

{ĤD,C2xP} = 0. (16)

Moreover, as opposed to ĤTBG, ĤD always satisfies the chiral
symmetry, anticommuting with both C and C′ irrespective
of w0 and w1. When acting on the b̂† operators, the two
chiral operators are, however, identical up to a valley-charge
rotation, as shown in Appendix B 1, and hence they do not
generate distinct symmetries.

The projected Dirac cone Hamiltonian HD features another
low-energy noncrystalline symmetry L, obeying {HD, L} = 0.
To define its action, we first note that due to the Bloch period-
icity property b̂

†
k,Q,η,α,s

= b̂
†
k−G,Q+G,η,α,s

, the projected Dirac
cone Hamiltonian from Eq. (10) can be cast into a simpler,
albeit less symmetric form

HD =
∑

η,α,β,s

∑

k
|k−ηq1|��

[

hD,η
ηq1

(k)
]

αβ
b̂

†
k,ηq1,η,α,sb̂k,ηq1,η,β,s, (17)

with � � 0.2. The action of the L operators can be defined as

Lb̂
†
δk+ηq1,Q,η,α,s

L−1 = b̂
†
−δk+ηq1,Q,η,α,s

, (18)

for any |δk| � �. Since L maps δk + ηq1 to −δk + ηq1, two
momentum points which are not related by any crystalline
symmetry, it represents an emerging effective low-energy
symmetry of ĤD.

2. Symmetries in the U �= 0 case

The introduction of a displacement field breaks the
C2x and mz symmetries of TSTG and only C2z, C3z, and
T remain good symmetries of Ĥ0. The flavor-valley-spin
[U(2) × U(2)]ĉ × [U(2) × U(2)]b̂ rotation symmetry is also
broken to a valley-spin U(2) × U(2) symmetry in the U �= 0
case (see Appendix B 2). The combined particle-hole trans-
formation mzC2xP remains a good anticommuting symmetry
of Ĥ0, obeying

{Ĥ0, mzC2xP} = 0. (19)

Finally, the TSTG Hamiltonian in the presence of displace-
ment breaks the chiral transformations C and C′, but preserves
the combined operations mzC and mzC

′, having a (modified)
chiral symmetry for the same parameter choices as ĤTBG.

C. Summary of symmetries

In the absence of displacement field the TSTG Hamilto-
nian splits into mirror-symmetry sectors for which both the
commuting and the anticommuting symmetries can be indi-
vidually discussed. The addition of displacement field breaks
the mz symmetry and couples the b̂† and ĉ† fermion flavors
(see Appendix B 2). This effectively breaks some of the sym-
metry transformations of Ĥ0 in the U = 0 case to combined
operations for U �= 0, as shown in Table I.
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TABLE I. Commuting (C2z, C3z, C2z, mz, T ) and anticommuting (P, C2xP, mzC2xP, C, C′, mzC, mzC
′) symmetries of the TSTG Hamiltonain

under different limits. The presence or absence of a given symmetry is respectively indicated by
√

or ✗. Some transformations denote
symmetries only for some given parameter choices (which are specified in parentheses). For Ĥ0, we indicate the symmetries for U �= 0.
The symmetries for the case U = 0 can be deduced from the symmetries of ĤTBG and ĤD.

C2z C3z C2x mz T P C2xP mzC2xP C C′ mzC mzC
′

ĤTBG
√ √ √ √ √ √ √ √ √

(w0 = 0)
√

(w1 = 0)
√

(w0 = 0)
√

(w1 = 0)
ĤD

√ √
✗

√ √
✗

√ √ √ √ √ √

Ĥ0
√ √

✗ ✗
√

✗ ✗
√

✗ ✗
√

(w0 = 0)
√

(w1 = 0)

IV. SINGLE-PARTICLE SPECTRUM

This section focuses on understanding the low-energy
single-particle spectrum of TSTG with or without a per-
pendicular displacement field. While the main results are
presented here, the more detailed exposition can be found
in Appendix D. After introducing the energy band basis for
TSTG, we show how a nonzero U hybridizes the TBG and
Dirac cone fermions by building a simplified tripod model
[3]. For the experimentally relevant values of the displace-
ment field [131], corresponding to U < 0.3, we can develop
a perturbation theory in U for the hybridization between the
two mirror-symmetry sectors of TSTG. The final result of this
section is an expression for the low-energy projected TSTG
Hamiltonian.

A. Energy band basis

For the low-energy spectrum of TSTG, it is useful to in-
troduce the energy band basis for the two mirror-symmetry
sectors (see also Appendix A 2) of the system. For each band
n (where n > 0 denotes the nth conduction band, while n < 0
labels |n|th valence band), we define the single-particle wave
functions uĉ

Qα;nη(k) and corresponding band energies ǫ ĉ
n,η(k)

for the first-quantized TBG Hamiltonian h
(η)
Q,Q′ (k) from Eq. (4)

according to
∑

Q′,β

[

h
(η)
Q,Q′ (k)

]

αβ
uĉ

Q′β;nη(k) = ǫ ĉ
n,η(k)uĉ

Qα;nη(k). (20)

Similarly, the single-particle wave functions ub̂
Qα;nη and cor-

responding band energies ǫ b̂
n,η(k) of the Dirac Hamiltonian

h
D,η

Q (k) from Eq. (6) must obey

∑

β

[

h
D,η

Q (k)
]

αβ
ub̂

Qβ;nη(k) = ǫ b̂
n,η(k)ub̂

Qα;nη(k), (21)

allowing us to define the energy band basis for both mirror-
symmetry sectors of TSTG:

ĉ
†
k,n,η,s

=
∑

Q∈Q±,α

uĉ
Qα;nη(k)ĉ†

k,Q,η,α,s
,

b̂
†
k,n,η,s

=
∑

Q∈Qη,α

ub̂
Qα;nη(k)b̂†

k,Q,η,α,s
. (22)

The commuting and anticommuting symmetries presented in
Sec. III impose certain relations between the single-particle
TSTG wave functions. Throughout this paper, we adopt the
gauge-fixing convention presented in Appendix C and in

Ref. [37] to fix the relative phase of the energy band operators
and corresponding wave functions in Eq. (22).

B. An approximate tripod model for TSTG

We now consider a simplified model for the low-energy
physics of TSTG near the KM point at k = q1. We employ
the TBG tripod model [3] that we further modify by coupling
with a Dirac cone Hamiltonian, as required by Eqs. (6) and
(7). Focusing on the η = + valley and restricting to the four
Q points (i.e., four plane-wave states) mandated by the tripod
model [see Fig. 2(a)], we write the single-particle eigenstates
of TSTG as

|
(k)〉 =
∑

α

[

3
∑

i=0

(ψi,α (k)ĉ†
k,Qi,+,α,s

)

+ ψD,α (k)b̂†
k,Q0,+,α,s

]

|0〉, (23)

with Qi = q1 + qi for i = 1, 2, 3 and Q0 = q1. The
first-quantized Hamiltonian acting on the 10-dimensional

−2

−1

0

1

2

FIG. 2. The low-energy band structure of TSTG in the presence
of a perpendicular displacement field. The blue lines show the TSTG
energy spectrum near charge neutrality for valley η = +, computed
by numerical diagonalization of the Hamiltonian in Eq. (3) along
high-symmetry momentum lines. The tunneling parameters w0 and
w1, as well as the displacement field U , are specified inside each
panel. Additionally, in (a) we illustrate schematically the four plane
waves of the tripod model from Eq. (25). We also highlight in yellow
the A1

+ region as defined in Eq. (9), where the hybridization between
the TBG active bands and the Dirac Hamiltonian is significant.
The quantitative (qualitative) features of the TSTG band structure
for U = 0.1 (U = 0.3) are accurately captured by the approximate
dispersion of the tripod model in Eq. (26), shown in red.
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spinor


T(k) =
(

ψT
0 (k), ψT

1 (k), ψT
2 (k), ψT

3 (k), ψT
D (k)

)

(24)

is given by

HTri =

















δk · σ T ′
1 T ′

2 T ′
3

U
2 1

T ′
1 h(1)(δk) 0 0 0

T ′
2 0 h(2)(δk) 0 0

T ′
3 0 0 h(3)(δk) 0

U
2 1 0 0 0 δk · σ

















,

(25)

where we have introduced the shorthand notation h(i)(δk) =
(δk − qi ) · σ for i = 1, 2, 3 and δk = k − q1. In Eq. (25),
we have denoted the two-dimensional Pauli vector by σ =
(σx, σy) and defined the rescaled tunneling matrices T ′

i =
Ti

√
2 (for i = 1, 2, 3), with Ti being given in Eq. (A9). The

10 × 10 Hamiltonian matrix in Eq. (25) cannot be solved
analytically. However, we are interested in the low-energy
physics of TSTG near the KM point, for which δk ∼ E ≪ 1
(where δk = |δk| and E is the energy of the state at δk), as
can be seen in Fig. 2. Thanks to a series of justified approxi-
mations detailed in Appendix D 1, we can analytically obtain
the low-energy dispersion relation near KM

E = ±
δk
(

3w
′2
0 + 2

)

±
√

9δk2
(

w
′2
0 + 2w

′2
1

)2 + U 2�

2�
, (26)

where � = (3w
′2
0 + 3w

′2
1 + 1) and w

′
0,1 = w0,1

√
2. We plot

the approximate dispersion relation of Eq. (26) in Fig. 2:
the simplified tripod model qualitatively and quantitatively
matches the low-energy spectrum of Ĥ0 obtained from numer-
ical diagonalization with a large number of Q points. Note that
a similar tripod model was derived in Ref. [118] but only for
U = 0.

C. Low-energy spectrum of TSTG

The low-energy physics of TSTG with displacement field
arises from the interplay between the almost-flat bands of
ĤTBG and the Dirac cone bands of ĤD with which they are
coupled by ĤU . We are interested in a quantitative perturba-
tion theory for the single-particle wave functions of TSTG
in the presence of a nonzero displacement field. Ideally, we
would also like to express the low-energy eigenstates of Ĥ0

only in terms of the eigenstates of ĤTBG: while they cannot

be analytically computed in the entire MBZ, their properties
have been extensively studied in Refs. [36,37,85,86].

In Appendix D 2, we show that rather than starting from
the full TSTG Hamiltonian in Eq. (3) and then projecting into
its low-energy states, an excellent approximation is to start
from the TBG Hamiltonian projected into the active bands
(HTBG) which is then hybridized with the Dirac cone fermions.
For valley η = + (η = −), the Hamiltonian HTBG + ĤD + ĤU

leads to close to the exact (i.e., with an overlap higher than
99%) eigenstates around the KM (K ′

M) point within a radius �

for both the active and the Dirac cone bands. It also captures
the correct eigenstates at ŴM for the active TBG bands, which
are not changed much by the introduction of the displace-

ment field. Note that around ŴM , this method will not give
the correct eigenstates for the Dirac cone bands (which are,
however, at high energy and do not contribute to the low-
energy physics). Indeed, the high Fermi velocity of the Dirac
cone bands implies that they hybridize with the higher-energy
(passive) bands of ĤTBG that we neglect in the projection (see
Fig. 2).

Using only three plane-wave states (i.e., three Q points) for
the mirror-antisymmetric fermions (an approximation which
was justified numerically in Appendix A 1), we can write the
low-energy single-particle eigenstates of Ĥ0 for valley η, spin
s, and band labeled by m as

|
η,s,m(k)〉 =

[

3
∑

i=1

∑

α

(

ψ
η,s,m
i,α (k)b̂†

k,ηqi,η,α,s

)

+
∑

|n|=1

φη,s,m
n (k)ĉ†

k,n,η,s

]

|0〉, (27)

where we have defined the three two-component spinors on
the sublattice space, ψ

η,s,m
i (k) (for i = 1, 2, 3), and the two-

component spinor in the space of the n = ±1 TBG active
bands φη,s,m(k). When acting on the eight-dimensional spinor


T (k) =
(

ψT
1 (k), ψT

2 (k), ψT
3 (k), φT (k)

)

, (28)

we obtain the following analytical expression for the low-
energy 8 × 8 first-quantized TSTG Hamiltonian:

H8×8 =















Eη U
†η

1 (k) U
†η

2 (k) U
†η

3 (k)

U
η

1 (k) h
D,η
ηq1

(k) 0 0

U
η

2 (k) 0 h
D,η
ηq2

(k) 0

U
η

3 (k) 0 0 h
D,η
ηq3

(k)















. (29)

For the sake of brevity, in Eq. (28), we have suppressed the η,
s, and m indices. In addition, in Eq. (29) the 2 × 2 diagonal
energy matrix for the TBG active bands in valley η is given by

Eη(k) =

(

ǫ ĉ
+1,η(k) 0

0 ǫ ĉ
−1,η(k)

)

(30)

whereas the 2 × 2 displacement field perturbation matrices
can be written in terms of the TBG wave functions defined
in Eq. (20):

[U η
i (k)]

α,n
=

U

2
uĉ

ηqiα;nη(k) (31)

for i = 1, 2, 3. As anticipated in Sec. II C, there are two
regions of interest in the BZ for the low-energy spectrum
of H0 and hence of H8×8: away and near the Dirac points
of the MBZ. In deriving the single-particle projected TSTG
Hamiltonian, we will now consider each of them individually.

D. Single-particle projected TSTG Hamiltonian

We first provide the final expression of the single-particle
projected TSTG Hamiltonian. We then sketch its derivation,
with the detailed proof given in Appendix D 2. The single-
particle projected TSTG Hamiltonian reads as

H0 = HTBG + HD + H
(b̂ĉ)

U + H
(ĉ)

U , (32)
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where we have introduced the single-particle projected TBG
[37] and Dirac Hamiltonians, which are respectively given by

HTBG =
∑

|n|=1
η, s

k∈MBZ

ǫ ĉ
n,η(k)ĉ†

k,n,η,s
ĉk,n,η,s, (33)

HD =
∑

|n|=1
η, s

|δk|��

ǫ b̂
n,η(δk)b̂†

δk+ηq1,n,η,sb̂δk+ηq1,n,η,s. (34)

Note that HD is only defined on a small region (|δk| � � �

0.2) of the MBZ as a consequence of the high Fermi velocity
of the Dirac cone bands for which

ǫ b̂
±1,η(δk) = ±|δk|. (35)

Equation (32) also incorporates the effects of a nonzero dis-

placement field through the contributions H
(b̂ĉ)

U (mixing the
TBG and Dirac bands) and H

(ĉ)
U (mixing the two active TBG

bands within each valley and spin). These last two terms in
Eq. (32) capture the effects of the perpendicular displacement
field in the two regions of the MBZ and will be derived below.

1. Perturbation theory away from the Dirac points

Away from the Dirac points, i.e., when k ∈ Cη, where

Cη =

(

MBZ \
3
⋃

i=1

Ai
η

)

, (36)

the hybridization between the eigenstates of ĤD and the active
bands of ĤTBG is suppressed by the difference in their ener-
gies. We can eliminate the ψi spinors of Eq. (29) by writing
them in terms of φ:

ψi = (E − hi )
−1Uiφ, (37)

where we have suppressed the valley indices and made the
k dependence implicit. In addition, we have also introduced
the shorthand notation hi ≡ h

D,η
ηqi

(k). Equation (29) can thus
be cast as a nonlinear eigenvalue equation

[

E +
3
∑

i=1

U
†
i (E − hi )

−1Ui

]

φ = Eφ. (38)

We expect the energy of the active bands to be only slightly
changed by the hybridization with the Dirac cone Hamiltonian
in the region Cη and have |E | ≪ |hi| = |k − ηqi|. We can
therefore ignore the E dependence in the denominator of the
second term of Eq. (38).1 This affords a major simplification
as the Hamiltonians hi can be readily inverted to give a linear

eigenvalue equation
[

E +
3
∑

i=1

U
†
i h−1

i Ui

]

φ = Eφ. (39)

1Alternatively, we can expand (E − hi )
−1 to linear order in E , and

still end up with an analytically solvable equation. In this paper, we
will ignore this linear contribution.

We show in Appendix D 2 b that the amplitude of the mirror-
antisymmetric operators is small enough in this region,
validating an approximation even at large values of U : for
k ∈ Cη, the displacement field only induces mixing between
the active TBG bands. This contribution is captured by the
effective Hamiltonian

H
(ĉ)

U =
∑

|n|, |m|=1
η, s

∑

k∈Cη

Bη
nm(k)ĉ†

k,n,η,s
ĉk,m,η,s, (40)

where the matrix Bη
nm is given in Eq. (D29) of Appendix D 2 b

and represents a second-order contribution in U . For small
enough displacement fields (i.e., when U 2/|k − ηqi| is much
smaller than the bandwidth of the TBG flat bands), the active
band states will not be significantly perturbed.

2. Perturbation theory near the Dirac points

Near any of the three Dirac points in the MBZ, the mixing
between the TBG active bands and the Dirac cone Hamilto-
nian is significant. If k is near the jth Dirac point in the MBZ
(i.e., k ∈ A

j
η), we will have |h j | ≪ 1, but |hi| ≈

√
3, for i �= j.

This implies that while the hybridization between the TBG
active bands and the jth Dirac Hamiltonian is relevant, there
is little to no mixing with the Dirac cone bands stemming from
the other two Dirac points of ĤD in the MBZ. We can therefore
approximate ψi ≈ 0 for i �= j and write the single-particle
TSTG wave functions for k ∈ A

j
η as

|
η,s,m(k)〉 =

[

∑

α

(ψη,s,m
j,α (k)b̂†

k,ηq j ,η,α,s
)

+
∑

|n|=1

φη,s,m
n (k)ĉ†

k,n,η,s

]

|0〉. (41)

In this region all four bands arising from the hybridization be-
tween the TBG active bands and the Dirac cone Hamiltonian
are relevant for the low energy of TSTG. The corresponding
first-quantized Hamiltonian reads as

H4×4 =

(

Eη(k) U
†η
j (k)

U
η
j (k) h

D,η
ηq j

(k)

)

. (42)

In Appendix D 2 c, we present a series of approximations
which renders this 4 × 4 Hamiltonian exactly solvable in the
(first) chiral limit. In the general case, we will write the
projected displacement field Hamiltonian in this region of the
MBZ in the energy band basis as

H
(b̂ĉ)

U =
∑

η, s

|n|, |m|=1
|δk|��

[

Nη
mn(δk)b̂†

kη,m,η,s
ĉkη,n,η,s + H.c.

]

, (43)

where kη ≡ δk + ηq1 and the displacement field overlap ma-
trix Nη

mn is defined in Eq. (D43) of Appendix D 2 c.

V. MANY-BODY TSTG HAMILTONIAN

This section introduces the interacting Hamiltonian for
TSTG. We only quote the main results here; the complete
derivations are relegated to Appendix F. We start by writing
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the Coulomb repulsion Hamiltonian in terms of the moiré
lattice fermion operators introduced in Sec. II. Next, we show
how the expression of the interaction Hamiltonian can be
simplified by employing fermion operators corresponding to
each mirror-symmetry sector. Using the energy band bases for
the TBG and Dirac single-particle Hamiltonians defined in
Sec. IV A, we project the interaction Hamiltonian in the low-
energy TSTG eigenstates. Finally, we write the expression for
the fully interacting TSTG Hamiltonian which is shown to
have a spatial many-body charge-conjugation symmetry.

A. Coulomb interaction in TSTG

The (unprojected) low-energy interaction Hamiltonian
governing electron-electron repulsion in TSTG reads as

ĤI =
1

2�tot

∑

G∈Q0
q∈MBZ

l, l ′

V l,l ′ (q + G)δρ l
G+qδρ

l ′

−G−q, (44)

where �tot is the total area of the TSTG sample and we
have defined the Fourier transformation of the relative (to the
single-layer graphene charge neutral point) electron density
operators corresponding to layer l to be

δρ l
G+q =

∑

η,α,s

∑

k∈MBZ
Q∈Qη,l

(

â
†
k,Q,η,α,s,l

âk−q,G+Q,η,α,s,l

−
1

2
δq,0δG,0

)

. (45)

In Eq. (44), V l,l ′ (q + G) represents the Fourier transformation
of the screened Coulomb potential V l,l ′ (r) governing the re-
pulsion between two electrons located, respectively, in layers
l and l ′ and separated by a distance r, measured in the plane
of the single-layer graphene. In the definition of the relative
density operators from Eq. (45), we are effectively ignoring
the intervalley scattering processes, which are suppressed by
the decay of the Coulomb potential in momentum space on a
scale much smaller than the intervalley separation of single-
layer graphene (see Appendix F 1 a).

For the typical gated arrangement used in experiments
[131,132], the interlayer distance (typically 3 Å) in TSTG
is much smaller than the gate separation ξ (usually 10 nm)
enabling us to neglect the dependence of V l,l ′ (q + G) on the
layer indices l and l ′ (see Appendix F 1 b) and write the
screened Coulomb interaction as

V l,l ′ (q) ≈ V (q) =
2πe2

ǫ

tanh (ξ |q|/2)

|q|
. (46)

This allows for a significant simplification since the interac-
tion Hamiltonian can now be written in terms of the relative
density operators corresponding to the two mirror-symmetry

sectors

δρ ĉ
G+q =

∑

k∈MBZ
Q∈Q±
η, α, s

(

ĉ
†
k,Q,η,α,s

ĉk−q,G+Q,η,α,s −
1

2
δq,0δG,0

)

,

δρ b̂
G+q =

∑

k∈MBZ
Q∈Qη

η, α, s

(

b̂
†
k,Q,η,α,s

b̂k−q,G+Q,η,α,s −
1

2
δq,0δG,0

)

.

(47)

We can thus separate the interaction Hamiltonian from
Eq. (44) into three contributions

ĤI = ĤI,TBG + ĤI,D + ĤI,TBG−D. (48)

The first and second terms in Eq. (48), respectively, represent
the interaction Hamiltonians for ordinary TBG and for Dirac
cone fermions

ĤI,TBG =
1

2�tot

∑

q∈MBZ
G∈Q0

V (q + G)δρ ĉ
G+qδρ

ĉ
−G−q, (49)

ĤI,D =
1

2�tot

∑

q∈MBZ
G∈Q0

V (q + G)δρ b̂
G+qδρ

b̂
−G−q. (50)

The third term corresponds to the Coulomb interaction be-
tween the TBG and Dirac cone fermions

ĤI,TBG−D =
1

2�tot

∑

q∈MBZ
G∈Q0

V (q + G)

×
[

δρ ĉ
G+qδρ

b̂
−G−q + H.c.

]

. (51)

Notice that the decomposition in Eq. (48) is valid even when
the mz symmetry is broken in the presence of a perpendicular
displacement field U �= 0.

B. Interaction projected Hamiltonian

Having derived the interaction Hamiltonian in the TSTG
mirror-symmetry basis defined in Eqs. (1) and (2), we now
turn our attention to projecting it in the low-energy TSTG
single-particle eigenstates. As shown in Appendix F 2, the
projected interaction Hamiltonian (henceforth denoted with-
out a hat) reads as

HI =
1

2�tot

∑

G∈Q0
q∈MBZ

(

Oĉ
q,G + Ob̂

q,G

)†(
Oĉ

q,G + Ob̂
q,G

)

, (52)

where we have introduced the operators

Oĉ
q,G =

√

V (q + G)
∑

k∈MBZ
|n|, |m|=1

η, s

M ĉ,η
mn (k, q + G)

×
(

ĉ
†
k+q,m,η,s

ĉk,n,η,s −
1

2
δq,0δm,n

)

(53)
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and

Ob̂
q,G =

√

V (q + G)
∑

|δk|, |δk+q|��

|n|, |m|=1
η, s

M b̂,η
mn (kη, q + G)

×
(

b̂
†
kη+q,m,η,s

b̂kη,n,η,s −
1

2
δq,0δm,n

)

, (54)

with kη ≡ δk + q1. Note that the expression of Oĉ
q,G is iden-

tical to the one corresponding to ordinary TBG derived in

Ref. [37]. Additionally, the operators O
f̂

q,G commute with each

other, i.e., [Ob̂
q1,G1

, Oĉ
q2,G2

] = 0, and obey O
f̂

−q,−G = O
† f̂

q,G, for

f̂ = ĉ, b̂. In Eqs. (53) and (54), the form factors M ĉ,η
mn and M b̂,η

mn

are defined in terms of the single-particle TBG and Dirac cone
single-particle wave functions introduced in Sec. IV A as

M f̂ ,η
mn (k, q + G) =

∑

α

Q∈Q±

u
∗ f̂

Q−Gα;mη
(k + q)u f̂

Qα;nη
(k), (55)

for f̂ = ĉ, b̂.
For the mirror-symmetric operators, the projection in the

TSTG low-energy modes is equivalent to restricting the sum-
mation in Eq. (53) to the active TBG bands. For the Dirac cone
fermions, we additionally restrict the momenta in Eq. (54) to
lie near the Dirac points of HD located at ηq1 for valley η. The
TBG form factors M ĉ,η

mn (k, q + G) were shown to decay expo-
nentially with |G| [36]. As such, only a few moiré reciprocal
vectors G contribute to the summation in Eq. (52): the recip-
rocal vectors G for which |G| = 0,

√
3. On the other hand, the

Dirac cone form factors M b̂,η
mn (k, q + G) vanish completely for

any nonzero reciprocal vector G, provided that the cutoff � is
small enough (as shown in Appendix F 2).

Finally, we note that the projected interaction Hamiltonian
in Eq. (52) is a sum of positive-semidefinite operators, and
hence is itself positive semidefinite [26], similarly to the case
of TBG [28,37].

C. Many-body projected TSTG Hamiltonian

The expression of the interaction projected TSTG Hamil-
tonian (52) can finally be combined with the projected
single-particle Hamiltonian from Eq. (32) to yield the many-

body projected TSTG Hamiltonian

H = H0 + HI . (56)

Investigating the symmetries of H under various different lim-
its forms the object of Sec. VI. For now, we will only mention
that H features a spatial many-body charge-conjugation sym-
metry P defined by the action of the single-particle antiunitary
transformation

U = mzC2xC2zT P (57)

followed by the interchange of the creation and annihilation
fermion operators (see Appendix G 1 for details). The many-
body projected Hamiltonian H is invariant under the action of
P , i.e.,

PHP−1 = H. (58)

In particular, P maps a many-body state with Ne electrons
to a state with −Ne electrons, where number of electrons
is measured with respect to the TSTG charge neutral point.
As a consequence of the charge-conjugation symmetry P ,
the eigenspectrum of the fully interacting projected TSTG
Hamiltonian is symmetric about the charge neutral point.

Finally, we note that the projected interaction Hamiltonian
from Eq. (52) is not normal ordered. The difference between
HI and its normal-ordered form :HI : is given by a quadratic
contribution �HI , up to a constant term, i.e., HI =:HI :
+�HI + const. By projecting the many-body TSTG Hamil-
tonian, we are effectively restricting ourselves to the 2N

low-energy fermion modes distributed symmetrically around
the charge neutral point. As shown in Appendix F 4 and
similarly to TBG [37], �HI = 1

2 (HN
HF − H−N

HF ), where HN
HF

represents the Hartree-Fock potential in the projected energy
eigenstates contributed by the occupied eigenstates bellow
the filling N . The quadratic contribution �HI can therefore
be thought as the effective potential arising in the projected
many-body Hamiltonian from the energy eigenstates which
have been projected away. More importantly, though, �HI is
essential for the existence of the experimentally observed P

symmetry in TBG [21], as :HI : alone lacks a spatial many-
body charge-conjugation symmetry.

VI. EXACT SYMMETRIES OF THE MANY-BODY

HAMILTONIAN

The single-particle TSTG Hamiltonian features a flavor-
valley-spin [U(2) × U(2)]ĉ × [U(2) × U(2)]b̂ rotation sym-
metry in the U = 0 case, which gets broken to a valley-spin
U(2) × U(2) symmetry upon the introduction a perpendic-
ular displacement field. Under various limits which will be
discussed below, these symmetries are not only inherited by
the many-body projected Hamiltonian, but also promoted to
enlarged continuous groups of either the interaction Hamilto-
nian HI , or of the full kinetic and interaction Hamiltonian, as
a consequence of the discrete symmetries presented in Sec. III
and Appendix B.

The aim of this section is to outline the symmetries of
the many-body projected Hamiltonian from Eq. (56). A more
detailed exposition is given in Appendix G. As in Sec. III, we
will first consider the case without a perpendicular displace-
ment field, and show that enlarged continuous symmetries
arise for each individual mirror-symmetry sector. Finally, we
will explore the effects of the perpendicular displacement field
on the aforementioned continuous symmetries.

Hereafter, we shall use ζ a, τ a, and sa to denote the identity
matrix (a = 0) and Pauli matrices (a = x, y, z) in the energy
band n = ±1, valley η = ±, and spin s = ↑,↓ subspaces,
respectively, for each mirror-symmetry sector. We will also
rely on the results of Ref. [37], and make use of the gauge-
fixing conventions detailed in Appendix C, as well as on the
resulting gauge-fixed forms of the single-particle (Appendix
E) and interaction (Appendix F 3) projected Hamiltonians.

A. Symmetries in the absence of displacement field

In the absence of a perpendicular displacement field, the
many-body projected Hamiltonian preserves the C2z, C3z,
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mz, and T symmetries of the single-particle TSTG Hamil-
tonian. Moreover, the two fermion flavors belonging to the
two mirror-symmetry sectors remain uncoupled at the single-
particle level and can (in principle) be individually rotated
in the band, valley, and spin subspaces. We will therefore
define two independent sets of generators corresponding, re-
spectively, to the mirror-symmetric and mirror-antisymmetric
fermion operators

Sab
ĉ =

∑

k∈MBZ
m, η, s

n, η′, s′

(

sab
ĉ

)

mηs,nη′s′ ĉ
†
k,m,η,s

ĉk,n,η′,s′ , (59)

Sab

b̂
=
∑

|δk|��

m, η, s

n, η′, s′

(

sab

b̂

)

mηs,nη′s′ b̂
†
kη,m,η,s

b̂kη′ ,n,η′,s′ , (60)

where we have defined kη ≡ δk + ηq1 and kη′ ≡ δk + η′q1.
In Eqs. (59) and (60), the sab

ĉ (sab

b̂
) Hermitian matrices

defined on the band, valley, and spin subspaces form a cer-
tain representation for the Lie algebra of the continuous
symmetry group pertaining to the mirror-symmetric (mirror-
antisymmetric) flavor. The two indices a and b, indexing the
generator Sab

ĉ (Sab

b̂
), take different values depending on the

continuous symmetry of the TSTG many-body Hamiltonian
in the limit considered, but are unrelated to the band, valley,
or spin Pauli matrix indices. We note that the generators Sab

ĉ

acting on the mirror-symmetric sector preserve momentum.
On the other hand, Sab

b̂
preserves momentum only if the matrix

sab

b̂
is diagonal in valley space.
The generators from Eqs. (59) and (60) commute with the

many-body TSTG Hamiltonian in different limits, and addi-
tionally commute with each other, i.e., [Sab

ĉ , Scd

b̂
] = 0. In what

follows, we will analyze the various terms of the many-body
TSTG Hamiltonian in the absence of displacement field and
determine the Lie algebra representation matrices sab

ĉ and sab

b̂
and the corresponding continuous symmetry groups.

1. Continuous symmetries of the mirror-antisymmetric sector

The δk-preserving symmetries of the single-particle Dirac
Hamiltonian (where δk is the momentum measured from the
Dirac points of HD, located at ηq1 in valley η) enforce certain
relations between the single-particle eigenstates ub̂

Qα;nη(k).
Using the gauge-fixing conventions of Appendix C 4, it can
be shown (see Appendix F 3 a) that the C2zT , C2zL, and C2zT

symmetries restrict the form factors M b̂(k, q + G) to the fol-
lowing parametrization in the band and valley subspaces

M b̂,η
mn (kη, q + G) =

1
∑

j=0

(M j )mη,nη
αb̂

j (δk, q + G), (61)

where αb̂
j (δk, q + G) represent real scalar functions and we

have defined M0 = ζ 0τ 0 and M1 = iζ yτ 0. In Appendix G 3,
we show that Eq. (61) implies that the Ob̂

q,G operators, gov-
erning the Coulomb interaction of the Dirac cone fermions in
Eq. (52), have an enlarged [U(4) × U(4)]b̂ symmetry. More

specifically, we can define two sets of independent generators

Sab

b̂± =
∑

|δk|��

m, η, s

n, η′, s′

(

sab

b̂±

)

mηs,nη′s′ b̂
†
kη,m,η,s

b̂kη′ ,n,η′,s′ , (62)

which obey
[

Sab

b̂±, Ob̂
q,G

]

= 0, (63)

for a, b = 0, x, y, z, with the corresponding representation
matrices being given by

sab

b̂± = 1
2 (ζ 0 ± ζ y)τ asb. (64)

As a consequence of its large Fermi velocity, the single-
particle contribution HD cannot be ignored (i.e., unlike the
mirror-symmetric sector [37], there is no flat limit for the
mirror-antisymmetric one). Selecting only the subset of gen-
erators from Eq. (63) that additionally commute with HD,
we conclude that the mirror-antisymmetric sector enjoys a
[U(4)]b̂ symmetry whose generators obey

[

Sab

b̂
, Ob̂

q,G

]

=
[

Sab

b̂
, HD

]

= 0, (65)

for a, b = 0, x, y, z. The representation matrices of the [U(4)]b̂

group are simply given by

sab

b̂
= ζ 0τ asb, (66)

and correspond to full U(4) rotations in the combined valley
and spin subspaces.

2. Continuous symmetries of the mirror-symmetric sector

The continuous symmetries of the mirror-symmetric sector
depend on the properties of the single-particle Hamiltonian
HTBG and the Oĉ

q,G operators defined in Eq. (53). These have
been derived and extensively discussed in Refs. [26–28,37].
As such, we will only enumerate these continuous symmetries
pertaining to the mirror-symmetric sector of TSTG, with a
more in-depth discussion being given in Appendix G 4.

The physically relevant limits of the projected TSTG
Hamiltonian are the same as those arising in ordinary TBG
[37]:

(1) The chiral-flat limit. In the (first) chiral-flat limit, we
neglect the single-particle dispersion of the TBG fermions.
The many-body TSTG Hamiltonian then simply becomes
H = HD + HI . As discussed in Sec. VI A 1, the dispersion
of the high-velocity Dirac fermions implies that the con-
tribution HD cannot be ignored. Additionally, we take the
chiral condition w0 = 0 to hold exactly. It follows that the
mirror-symmetric sector enjoys an enlarged [U(4) × U(4)]ĉ

symmetry [28,37] generated by the 32 operators Sab
ĉ± (see

Appendix G 4 a) for which the representation matrices read
as

sab
ĉ± = 1

2 (ζ 0 ± ζ y)τ asb, (67)

for a, b = 0, x, y, z.
(2) The nonchiral-flat limit. The nonchiral-flat limit is ob-

tained by relaxing the chiral condition from the previous case,
but still ignoring the dispersion of the TBG active bands,
i.e., H = HD + HI . As shown in Appendix G 4 b, the mirror-
symmetric sector has a [U(4)]ĉ symmetry [26,37] generated
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by the operators in Eq. (59) for a, b = 0, x, y, z. The corre-
sponding representation matrices read as

s0b
ĉ = ζ 0τ 0sb, sxb

ĉ = ζ yτ xsb,

s
yb

ĉ = ζ yτ ysb, szb
ĉ = ζ 0τ zsb,

(68)

for b = 0, x, y, z, and form a subset of the ones given in
Eq. (67) for the chiral-flat limit, but are different from either
sab

ĉ+ or sab
ĉ−.

(3) The chiral-nonflat limit. In the (first) chiral-nonflat
limit, we assume the chiral condition w0 = 0 to hold, but
we no longer ignore the dispersion of the TBG active bands.
As such, the full many-body TSTG Hamiltonian is restored,
meaning that H = HD + HTBG + HI . In this case, the TBG
fermions enjoy a [U(4)]ĉ symmetry [37] which is different
from the one in the nonchiral-flat limit (see Appendix G 4 c).
The generators of this symmetry are given in Eq. (59) for
a, b = 0, x, y, z, with the representation matrices

sab
ĉ = ζ 0τ asb (69)

corresponding to full U(4) rotations in the combined valley
and spin subspaces.

(4) The nonchiral-nonflat case. Finally, moving away
from the chiral condition and taking into consideration ef-
fects of the nonzero dispersion of the TBG active bands
corresponds to the nonchiral-nonflat case. The many-body
TSTG Hamiltonian given by H = HD + HTBG + HI has only
a [U(2) × U(2)]ĉ valley-spin rotation symmetry (see Ap-
pendix G 4 d). The generators of this symmetry are also given
in Eq. (59) for a = 0, z and b = 0, x, y, z, and have the follow-
ing representation matrices:

s0b
ĉ = ζ 0τ 0sb, szb

ĉ = ζ 0τ zsb, (70)

for b = 0, x, y, z. They correspond to independent spin-charge
rotations in the two valleys of the mirror-symmetric sector.

B. Exact symmetries in the presence of displacement field

When U �= 0, the TSTG many-body projected Hamiltonian
is symmetric under the C2z, C3z, and T symmetries. Addi-

tionally, the projected displacement field contribution H
(b̂ĉ)

U

couples the two mirror-symmetry sector fermions, which can
no longer be rotated independently in the band, valley, or
spin subspaces. As such, we prove in Appendix G 5, that the
generators of continuous symmetries of H in the presence of
displacement field must have the form

Sab =
∑

m, η, s

n, η′, s′

[

∑

k∈MBZ

(sab)mηs,nη′s′ ĉ
†
k,m,η,s

ĉk,n,η′,s′

+
∑

|δk|��

(sab)mηs,nη′s′ b̂
†
kη,m,η,s

b̂kη′ ,n,η′,s′

]

, (71)

where the representation matrix sab is diagonal in valley space.
Note that the action of the generator in the two mirror-
symmetry sectors is identical (i.e., they generate the same
rotations in the valley and spin subspaces).

Under any of the relevant limits of the many-body pro-
jected TSTG Hamiltonian, the generators from Eq. (71) must,

at the very least, obey the following commutation relations:
[

Sab, Ob̂
q,G

]

=
[

Sab, Oĉ
q,G

]

= [Sab, HD] = 0, (72)

in addition to commuting with the projected displacement

field contributions H
(b̂ĉ)

U and H
(ĉ)

U . As a result, a nonzero
displacement field breaks the symmetry of TSTG to the trivial
U(2) × U(2) spin-valley rotation symmetry. The correspond-
ing generators from Eq. (71) are given simply by

s0b
ĉ = ζ 0τ 0sb, szb

ĉ = ζ 0τ zsb, (73)

for b = 0, x, y, z.

C. Summary

In the absence of displacement field, the TBG and Dirac
cone fermions are uncoupled at the single-particle level. As
a result, the many-body projected TSTG Hamiltonian in-
herits both the symmetries the many-body projected TBG
Hamiltonian [37] to which those of an interacting Dirac
cone Hamiltonian are added, for a full symmetry of up to
[U(4) × U(4)]ĉ × [U(4) × U(4)]b̂ of the projected interaction
Hamiltonian HI . The introduction of a perpendicular displace-
ment field breaks the symmetries of the system to the trivial
U(2) × U(2) symmetry, which corresponds to independent
spin-charge rotations in the two TSTG valleys. For complete-
ness, the enlarged band, valley, and spin rotation symmetries
of TSTG under different physically relevant limits are pre-
sented in Table II.

VII. DISCUSSION

The first part of this paper was focused on the single-
particle TSTG Hamiltonian. After reviewing a BM model
for TSTG, we have derived the discrete crystalline symme-
tries of the system both with and without a perpendicular
displacement field. In the absence of displacement field, we
have uncovered a hidden anticommuting symmetry of the
single-particle Hamiltonian, valid in the low-energy limit.
The corresponding operator L maps the high-velocity Dirac
fermions from momentum δk + ηq1 to −δk + ηq1 in valley
η, and hence denotes a nonlocal symmetry of the problem.
We have also derived a series of approximations for the TSTG
single-particle spectrum near charge neutrality, starting with
a simplified tripod model which captured the essence of the
TSTG band structure in the presence of displacement field.
Finally, we provided more quantitative perturbation schemes
for the low-energy TSTG spectrum. They enabled us to obtain
the TSTG eigenstates in the entire MBZ in terms of the TBG
flat-band wave functions, thus setting the stage for deriving
the projected interaction Hamiltonian.

In the second half of the paper, we introduced the Coulomb
interaction Hamiltonian projected in the low-energy TSTG
single-particle eigenstates. We showed that the electron-
electron repulsion is comprised of three terms, corresponding
to the interaction between the TBG fermions, the interaction
between the Dirac electrons, and a term denoting the inter-
action between the TBG and high-velocity Dirac fermions.
We then analyzed the symmetries of the many-body projected
TSTG Hamiltonian. As a result of the local and nonlocal
discrete symmetries at the single-particle level, we showed
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TABLE II. Continuous symmetries of the many-body projected TSTG Hamiltonian under different limits. We list the continuous symmetry
groups corresponding to the two interaction operators Ob̂

q,G and Oĉ
q,G, the projected interaction Hamiltonian HI , as well as TSTG many-body

Hamiltonians under different relevant limits. In the absence of displacement field, the two fermion flavors corresponding to different mirror-
symmetry sectors can be independently rotated in the band, valley, and spin subspaces. As such, the continuous symmetry group for TSTG is
the direct product of the continuous symmetry groups corresponding to each individual mirror-symmetry sector. Following to introduction of
displacement field, the global TSTG symmetry is broken to the trivial U(2) × U(2) group.

Operator/Hamiltonian Flat-band limit Chiral limit (w0 = 0) Continuous symmetry

Ob̂
q,G [U(4) × U(4)]b̂

Oĉ
q,G Yes [U(4) × U(4)]ĉ

Oĉ
q,G No [U(4)]ĉ

HI Yes Yes [U(4) × U(4)]ĉ × [U(4) × U(4)]b̂

HI Yes No [U(4)]ĉ × [U(4) × U(4)]b̂

HD + HI Yes Yes [U(4) × U(4)]ĉ × [U(4)]b̂

HD + HI Yes No [U(4)]ĉ × [U(4)]b̂

HD + HTBG + HI No Yes [U(4)]ĉ × [U(4)]b̂

HD + HTBG + HI No No [U(2) × U(2)]ĉ × [U(4)]b̂

HD(+HTBG ) + H
(b̂ĉ)

U + H
(ĉ)

U + HI No/yes No/yes U(2) × U(2)

that the spin-valley U(2) × U(2) symmetry gets promoted
to enlarged symmetry groups, up to a full [U(4) × U(4)]ĉ ×
[U(4)]b̂ symmetry of the many-body projected Hamiltonian
in the chiral-flat limit for U = 0 (see Table II). Moreover,
we have shown that in the absence of displacement field,
the enhanced rotation groups feature both local and nonlocal
generators.

With the TSTG projected many-body Hamiltonian in hand,
including its symmetries and derived gauge-fixing conditions,
we have paved the way for understanding TSTG beyond the
single-particle paradigm. Even in the absence of displace-
ment field, the interaction naturally spoils the naive picture
of decoupled TBG and high-velocity Dirac fermions [63]. In
light of the recent experiments [131,132], this naturally raises
questions about the fate of the insulating TBG phases, both
with and without a perpendicularly applied displacement field.
Such a study will be the core of our forthcoming work [140].
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APPENDIX A: SINGLE-PARTICLE HAMILTONIAN

In this Appendix, we provide a detailed derivation of the
TSTG single-particle Hamiltonian presented in Sec. II. We

explain how the TSTG Hamiltonian splits into a TBG-like
contribution coupled to a high-velocity Dirac cone Hamilto-
nian by an externally applied displacement field. Finally, we
introduce the energy-band basis which will be employed in
writing the single-particle projected Hamiltonian in Sec. IV D.

1. Derivation of the single-particle Hamiltonian

Let â
†
p,α,s,l

represent the fermion operator in the plane-wave
basis of graphene layer l . The momentum p is measured from
the Ŵ point of the monolayer graphene Brillouin Zone (BZ),
α = A, B represents the sublattice index, s = ↑,↓ is the spin
index, and l = 1, 2, 3 denotes the layer index (respectively
corresponding to the lower, middle, and upper layers). Fo-
cusing on TSTG, we define K+ as the K point in the top
and bottom layer graphene BZ (l = 3, 1), and K− as the K

point in the middle layer graphene BZ (l = 2). K+ and K−
differ by a twist angle θ . For concreteness, we assume K±
is along the direction with an angle ±θ/2 to the x̂ axis, as
depicted in Fig. 1(a). Each graphene layer contains two valleys
K and K ′, labeled by η = ±1 and located at momenta ηK±,
corresponding to two (decoupled) valleys of the moiré single-
particle Hamiltonian.

For later use, we also introduce the two-dimensional (2D)
momenta

q1 = (K+ − K−) = kθ (0, 1)T ,

q2 = C3zq1 = kθ

(

−
√

3

2
,−

1

2

)T

, (A1)

q3 = C2
3zq1 = kθ

(

√
3

2
,−

1

2

)T

,

whose coordinates are given in the (kx, ky) basis and where
kθ = |K− − K+| = 2|K+| sin(θ/2) corresponding to the twist
angle θ . We can then define the MBZ for the TSTG moiré
lattice, which is generated by the reciprocal vectors

bM1 = q3 − q1, bM2 = q3 − q2. (A2)
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To concentrate on the low-energy physics of the two val-
leys, we define Q0 = ZbM1 + ZbM2 as the triangular moiré
reciprocal lattice generated by the reciprocal basis vectors
bM1 and bM2. We also define two shifted momentum lattices
Q+ = q1 + Q0 and Q− = −q1 + Q0, which together form a
honeycomb lattice [as seen in Fig. 1(b)]. We then introduce
the low-energy fermion operators â

†
k,Q,η,α,s,l

defined as

â
†
k,Q,η,α,s,l

≡ â
†
ηKl +k−Q,α,s,l

for Q ∈ Qη,l (A3)

with k ∈ MBZ and k = 0 representing the ŴM point. In ad-
dition, for a fixed valley η, we have introduced the notation

Qη,l =
{

Qη for l = 1, 3,

Q−η for l = 2,
(A4)

and also denoted Kl = K+ for l = 1, 3 and Kl = K− for l =
2. Because of the staggered trilayer structure, there are twice
as many fermion operators in the lattice Qη (â†

k,Q,η,α,s,l
, with

l = 1, 3) than there are in lattice Q−η (â†
k,Q,η,α,s,2). It is also

worth noting that the low-energy fermion operators are not
periodic in k, but obey the Bloch periodicity property

â
†
k,Q,η,α,s

= â
†
k−G,Q+G,η,α,s

, (A5)

for any G ∈ Q0.
Within each valley η, we introduce the first-quantized

momentum space intralayer Hamiltonian h
D,η

Q (k) defined in
sublattice space by

hD,+
Q (k) = vF (k − Q) · σ,

hD,−
Q (k) = σxhD,+

−Q (−k)σx,
(A6)

where vF represents the Fermi velocity of the single graphene
layer. h

D,η

Q (k) represents a Dirac cone Hamiltonian that has
been folded inside the first MBZ (k ∈ MBZ). In this paper, we
employ dimensionless units, akin to the momentum and en-
ergy rescaling relation defined in Eq. (8) of Sec. II B, namely,

k →
k

kθ

, E →
E

vF kθ

. (A7)

We also define the first-quantized Hamiltonian h
I,η

Q,Q′ describ-
ing the interlayer tunneling between two adjacent graphene
sheets as

hI,+
Q,Q′ (k) =

3
∑

j=1

TjδQ,Q′+q j
,

hI,−
Q,Q′ (k) = σxhI,−

−Q,−Q′ (−k)σx,

(A8)

where the tunneling matrices Tj are given by

Tj = w0σ0 + w1

[

σx cos
2π ( j − 1)

3
+ σy sin

2π ( j − 1)

3

]

.

(A9)
Here, σ0 and σ = (σx, σy) represent the 2 × 2 identity matrix
and Pauli matrices in the sublattice space, while w0 � 0 and
w1 � 0 are the interlayer hoppings at the AA and AB stack-
ing centers of two consecutive graphene sheets, respectively.
Generically, in realistic systems w0 < w1 due to lattice relax-
ation and corrugation effects [46,58,86,89,92]. Note that h

I,η

Q,Q′

vanishes unless Q and Q′ belong to different shifted momen-
tum lattices. We can now write the single-particle Hamiltonian
for TSTG using the low-energy operators

Ĥ0 =
∑

k∈MBZ

∑

η,α,β,s





∑

l∈{1,3}

∑

Q∈Qη

[

h
D,η

Q (k)
]

αβ
â

†
k,Q,η,α,s,l

âk,Q,η,β,s,l +
∑

Q∈Q−η

[

h
D,η

Q (k)
]

αβ
â

†
k,Q,η,α,s,2âk,Q,η,β,s,2

+
∑

l∈{1,3}

∑

Q∈Q−η

Q′∈Qη

[

h
I,η

Q,Q′

]

αβ
â

†
k,Q,η,α,s,2âk,Q′,η,β,s,l +

∑

l∈{1,3}

∑

Q∈Qη

Q′∈Q−η

[

h
I,η

Q,Q′

]

αβ
â

†
k,Q,η,α,s,l

âk,Q′,η,β,s,2

+
U

2

∑

l∈{1,3}

(l − 2) δα,β

∑

Q∈Qη

â
†
k,Q,η,α,s,l

âk,Q,η,β,s,l



. (A10)

In Eq. (A10), we have introduced a perpendicular displace-
ment field, which is equivalent to an onsite potential of U/2,
0, −U/2 in the top, middle, and bottom layers, respectively.
When U = 0, the system is symmetric with respect to mir-
ror reflections perpendicular to the ẑ axis (to be defined
later as a symmetry). Therefore, Eq. (A10) can be simpli-
fied significantly by working in the mirror-symmetric and
mirror-antisymmetric bases. The mirror-symmetric operators
are given by

ĉ
†
k,Q,η,α,s

=

{ 1√
2
(â†

k,Q,η,α,s,3 + â
†
k,Q,η,α,s,1), Q ∈ Qη

â
†
k,Q,η,α,s,2, Q ∈ Q−η

(A11)

while the mirror-antisymmetric ones are given by

b̂
†
k,Q,η,α,s

=
1

√
2

(â†
k,Q,η,α,s,3 − â

†
k,Q,η,α,s,1), Q ∈ Qη.

(A12)

The low-energy operators corresponding to the two mirror-
symmetry sectors inherit the Bloch periodicity property from
Eq. (A5) and obey

b̂
†
k,Q,η,α,s = b̂

†
k−G,Q+G,η,α,s,

ĉ
†
k,Q,η,α,s

= ĉ
†
k−G,Q+G,η,α,s

,
(A13)
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for any G ∈ Q0. When written in the mirror-symmetry sector
basis, the Hamiltonian of TSTG splits into three terms

Ĥ0 = ĤTBG + ĤD + ĤU . (A14)

In Eq. (A14), the mirror-symmetric low-energy operators
ĉ

†
k,Q,η,α,s give rise to the term

ĤTBG =
∑

k∈MBZ

∑

η,α,β,s

∑

Q,Q′∈Q±

[

h
(η)
Q,Q′ (k)

]

αβ
ĉ

†
k,Q,η,α,s

ĉk,Q′,η,β,s,

(A15)
which is similar to the ordinary twisted bilayer graphene
(TBG) Hamiltonian, but with a rescaled tunneling amplitude,
corresponding to the first-quantized Hamiltonian

h
(η)
Q,Q′ (k) = h

D,η

Q (k)δQ,Q′ +
√

2h
I,η

Q,Q′ . (A16)

At the same time, the mirror-symmetric b̂
†
k,Q,η,α,s

operators,
which are only defined for Q ∈ Qη, give rise to a solitary
Dirac cone contribution, folded inside the first MBZ

ĤD =
∑

k∈MBZ

∑

η,α,β,s

∑

Q∈Qη

[

h
D,η

Q (k)
]

αβ
b̂

†
k,Q,η,α,s

b̂k,Q,η,β,s,

(A17)
while the third term in Eq. (A14) couples the TBG-like and
the Dirac cone degrees of freedom

ĤU =
∑

k∈MBZ

∑

η,α,s

∑

Q∈Qη

U

2
(b̂†

k,Q,η,α,sĉk,Q,η,α,s

+ ĉ
†
k,Q,η,α,s

b̂k,Q,η,α,s). (A18)

The Dirac cone and the TBG-like single-particle Hamiltonians
are independent, unless the mirror symmetry is broken by the
addition of a displacement field (U �= 0).

It is worth noting that, in practice, we always take a fi-
nite number of lattice points inside the Q± sublattices. As
explained in Ref. [36], we only consider the Q points with
|Q| smaller than a certain cutoff value, thus ensuring that all
the discrete symmetries of the system are preserved. In what
follows, we will denote the number of Q points in lattice
Qη by |Qη|. The influence that the cutoff |Qη| has on the
energy spectrum of the TBG Hamiltonian from Eq. (A15)
was extensively discussed in Ref. [36]. In principle, while
one could use the same cutoff in defining the Dirac Hamil-
tonian, a further approximation is justified in this case: we
can restrict to considering only three Q points in the Dirac
Hamiltonian expression from Eq. (A17). This approximation
(which we will henceforth call the three-Q approximation)
can be understood by remembering that we are interested
in the low-energy physics of TSTG, which arises from the
interplay between the almost-flat (i.e., with a small bandwidth
ω ≪ vF kθ ) bands of TBG and the Dirac cone bands of ĤD.
The flat bands of ĤTBG from Eq. (A15) have essentially zero
energy with a small bandwidth ω, hence, the only eigenstates
which can efficiently perturb the flat-band modes of ĤTBG are
the ones which have an energy significantly smaller than one.
Since the MBZ forms a hexagon defined by the vertices ±qi

(for i = 1, 2, 3), the only possibility for |hD,η

Q (k)| ≪ 1, with
k ∈ MBZ, is for Q to be one of the ηqi points (for i = 1, 2, 3)
in each valley η.

We explore the effects of the three-Q approximation on
the one-particle energy spectrum in Figs. 3 and 4 for both
the nonchiral (w0 �= 0) and the chiral (w0 = 0) limits, respec-
tively. Taking the case when the same Q± sublattice cutoff
is employed for both ĤTBG and ĤD as a reference, there is
no discernible difference in the spectra when the three-Q
approximation is employed.

Moreover, even with Q ∈ {ηqi}, the low-energy condition
|hD,η

Q (k)| ≪ 1 is only true for |k − Q| � � ≪ 1, where k ∈
MBZ. As depicted in Fig. 1(b), we will therefore introduce
three zones Ai

η (where i = 1, 2, 3) inside the first MBZ for
each valley η, which are defined as

Ai
η = {k ∈ MBZ | |k − ηqi| � �}. (A19)

Typically, the cutoff � will be much smaller than 1, but
bigger than the bandwidth ω of the flat bands of ĤTBG. A
physical cutoff is to take � as the gap between the flat bands
and the passive bands of ĤTBG. With these approximations,
we can write the Dirac cone Hamiltonian projected into the
low-energy degrees of freedom as

HD =
∑

η,α,β,s

3
∑

i=1

∑

k∈Ai
η

[

hD,η
ηqi

(k)
]

αβ
b̂

†
k,ηqi,η,α,s

b̂k,ηqi,η,β,s. (A20)

To emphasize that the Hamiltonian HD is projected into low-
energy modes with the cutoff �, we have omitted the hat to
differentiate it from the unprojected Dirac cone Hamiltonian
ĤD.

2. Single-particle eigenstates

In the absence of a displacement field, the single-particle
Hamiltonian Ĥ0 is a sum of two commuting terms, ĤTBG and
ĤD, which can therefore be individually diagonalized. For this
purpose, we introduce the energy band basis, which is defined
according to

ĉ
†
k,n,η,s

=
∑

Q∈Q±,α

uĉ
Qα;nη(k)ĉ†

k,Q,η,α,s
,

b̂
†
k,n,η,s

=
∑

Q∈Qη,α

ub̂
Qα;nη(k)b̂†

k,Q,η,α,s
,

(A21)

where uĉ
Qα;nη(k) and ub̂

Qα;nη(k) are the eigenstate wave func-
tions of energy band n of the first-quantized single-particle
Hamiltonians h

(η)
Q,Q′ (k) and h

D,η

Q (k), respectively. For each
valley and spin, we shall use the integer n > 0 to denote the
nth conduction band and use the integer n < 0 to label the
|n|th valence band. They obey

∑

Q′,β

[

h
(η)
Q,Q′ (k)

]

αβ
uĉ

Q′β;nη(k) = ǫ ĉ
n,η(k)uĉ

Qα;nη(k),

∑

β

[

h
D,η

Q (k)
]

αβ
ub̂

Qβ;nη(k) = ǫ b̂
n,η(k)ub̂

Qα;nη(k),
(A22)

where ǫ ĉ
n,η(k) and ǫ b̂

n,η(k) are the single-particle energies of

the eigenstates uĉ
Qα;nη(k) and ub̂

Qα;nη(k), respectively. Owing
to the Bloch periodicity property of Eq. (A13), we can gen-
eralize the eigenstate wave functions outside the first MBZ
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FIG. 3. The effects of the three-Q approximation on the single-particle spectrum of TSTG in the presence of displacement field for valley
η = + in the nonchiral limit. The blue line in (a) and (c) shows the low-energy spectrum of Ĥ0 (which we dub the unapproximated spectrum)
obtained by employing |Q+| = |Q−| = 330 points in the expression for ĤTBG, ĤD, and ĤU for two values of the displacement field U in the
nonchiral limit (w0/w1 = 0.8). In (b) and (d), we approximate the spectrum by reducing the number of Q points used in ĤD and ĤU to just
three, as discussed in Appendix A 1. The bands in (b) and (d) are colored according to the overlap between the approximated (|
app〉) and
the unapproximated (|
〉) single-particle wave functions: the overlap is always higher than 0.99, thus justifying this approximation. In (a) and
(c), the red lines denote the energy bands near the KM point obtained with the tripod model from Appendix D 1, which is seen to qualitatively
predict the main features of the spectrum. The parameter values are indicated as in inset in the lower-left side of each plot.
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FIG. 4. The effects of the three-Q approximation on the single-particle spectrum of TSTG in the presence of displacement field for valley
η = + in the chiral limit. The meaning of the panels is the same as Fig. 3. The overlap between the approximated and unapproximated
single-particle wave function is always higher than 0.99.
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using the following embedding relations:

u
f̂

Qα;nη
(k + G0) = u

f̂

Q−G0α;nη
(k), (A23)

ensuring that the energy band basis is defined periodically
inside the MBZ, namely,

f̂
†
k,n,η,s

= f̂
†
k+G0,n,η,s

, (A24)

for f̂ † = b̂†, ĉ† and any MBZ reciprocal lattice vector G0

(G0 ∈ Q0).

APPENDIX B: SYMMETRIES OF THE SINGLE-

PARTICLE HAMILTONIAN

In this Appendix, we extensively discuss the symme-
tries of the single-particle Hamiltonian from Eq. (A14)
summarized in Sec. III. It is instructive to consider the
mirror-symmetric U = 0 case first, as the Hamiltonian splits
into two independent terms, namely ĤTBG and ĤD, which
correspond respectively to the mirror-symmetric and mirror-
antisymmetric sectors. For ĤTBG, the various symmetries have
been derived and discussed in Refs. [37,85,86,121] whose
notation and conventions we will follow. In addition to the
crystalline symmetries, for ĤD, we also discuss the emergence
of a low-energy effective symmetry, which is incompatible
with a crystalline lattice Q0.

In the presence of displacement field, Ĥ0 can no longer be
split into commuting contributions; the symmetries must be
discussed for the entire Hamiltonian.

1. Symmetries in the U = 0 case

(1) Discrete symmetries. Since graphene has zero spin-
orbit coupling (SOC), we can define a set of spinless sym-
metries for TSTG: the spinless unitary discrete symmetries
C2z, C3z, C2x, mz, and the spinless antiunitary time-reversal
symmetry T . As discussed in Sec. III A, the mirror-symmetric
term ĤTBG is symmetric under C2z, C3z, C2x, mz, and T , while
the mirror-antisymmetric term has only the C2z, C3z, mz, and
T symmetries (i.e., it is not symmetric under C2x).

We denote the action of a spinless symmetry operator g on
the two flavors of fermions as

gĉ
†
k,Q,η,α,s

g−1 =
∑

Q′η′β

[Dĉ(g)]Q′η′β,Qηα ĉ
†
gk,Q′,η′,β,s

,

gb̂
†
k,Q,η,α,sg

−1 =
∑

Q′η′β

[Db̂(g)]Q′η′β,Qηα b̂
†
gk,Q′,η′,β,s,

(B1)

where Dĉ(g) and Db̂(g) are the representation matrices of the
symmetry operator g in the space of indices {Q, η, α} for
each fermion operator. We denote gk to be the momentum
obtained after acting the transformation g on momentum k. In
particular, C2zk = T k = −k. The representation matrices for
the discrete symmetries of TSTG are given by [37,85,86]

[D(C2z )]Q′η′β,Qηα = δQ′,−Qδη′,−η(σx )βα, (B2)

[D(C3z )]Q′η′β,Qηα = δQ′,C3zQδη′,η

(

eiη 2π
3 σz
)

βα
, (B3)

[D(T )]Q′η′β,Qηα = δQ′,−Qδη′,−ηδβ,α, (B4)
[Dĉ(C2x )]Q′η′β,Qηα = δQ′,C2xQδη′,η(σx )βα, (B5)

where D(g) stands for both Dĉ(g) and Db̂(g). The representa-
tion matrices for the mirror mz symmetry are different for the
two fermion flavors

[Dĉ(mz )]Q′η′β,Qηα = δQ′,Qδη′,ηδβ,α,

[Db̂(mz )]Q′η′β,Qηα = −δQ′,Qδη′,ηδβ,α. (B6)

In particular, the combined symmetry C2zT does not change k

(C2zT k = k) and has the representation matrix

[D(C2zT )]Q′η′β,Qηα = [D(C2z )D(T )]Q′η′β,Qηα

= δQ′,Qδη′,η(σx )βα. (B7)

Note that the C2x transformation exchanges the two Q±
sublattices, i.e., it maps Q ∈ Q± to C2xQ ∈ Q∓, without
exchanging the valleys. Because the mirror-antisymmetric op-
erators b̂

†
k,Q,η,α,s at a given valley η only exist for Q ∈ Qη, the

action of C2x on them can not be defined. Therefore, C2x is not
a symmetry of ĤD.

(2) [U(2) × U(2)]ĉ × [U(2) × U(2)]b̂ spin-charge rota-

tion symmetry. In the single-particle Hamiltonian of TSTG for
U = 0, the two valleys η = ± and the two fermion flavors (b̂†

and ĉ†) are decoupled. At the same time, monolayer graphene
has zero (negligible) SOC, implying that in each valley, the
SU(2) spin for each fermion flavor can be freely rotated.
Together with the charge U(1) symmetry of each valley fla-
vor, this leads to a global [U(2) × U(2)]ĉ × [U(2) × U(2)]b̂

symmetry. The 16 generators of this symmetry are given by

Ŝab
ĉ =

∑

α, η

s, s′

∑

k∈MBZ
Q∈Q0

(τ a)ηη(sb)ss′ ĉ
†
k,Q,η,α,s

ĉk,Q,η,α,s′ , (B8)

Ŝab

b̂
=
∑

α, η

s, s′

∑

k∈MBZ
Q∈Qη

(τ a)ηη(sb)ss′ b̂
†
k,Q,η,α,s

b̂k,Q,η,α,s′ , (B9)

where a = 0, z and b = 0, x, y, z. We have defined τ a and sa

(a = 0, x, y, z) to be the 2 × 2 identity and Pauli matrices in
the valley and spin spaces, respectively.

(3) Particle-hole transformations. In addition to the above
symmetries, one can also define a unitary particle-hole (PH)
transformation P [85]. The action of the unitary PH transfor-
mation on the mirror-symmetric fermions is given by

Pĉ
†
k,Q,η,α,s

P−1 =
∑

Q′η′β

[Dĉ(P)]Q′η′β,Qηα ĉ
†
−k,Q′,η′,β,s

, (B10)

with the representation matrix

[Dĉ(P)]Q′η′β,Qηα = δQ′,−Qδη′,ηδβ,αζQ, (B11)

where

ζQ =
{+1 Q ∈ Q+,

−1 Q ∈ Q−.
(B12)

Note that P transforms creation operators to creation operators
(rather than annihilation operators), and exchanges the two
Q± sublattices, mapping Q ∈ Q± to −Q ∈ Q∓. In addition,
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the PH transformation obeys

P2 = −1, [P,C3z] = 0,

{P,C2x} = 0, {P,C2z} = 0,

{P, T } = 0, [P, mz] = 0. (B13)

The PH transformation anticommutes with ĤTBG defined
in Eq. (A15),

{P, ĤTBG} = 0, (B14)

and hence does not represent a commuting symmetry of
the Hamiltonian, but rather a relation between the positive
and negative spectra of ĤTBG. At the same time, because P

exchanges the two Q± sublattices, without exchanging the
valleys, its action cannot be defined on the b̂† operators, and
therefore, ĤD is not PH symmetric. Nevertheless, one can still
introduce a combined transformation C2xP, whose action

C2xP f̂
†
k,Q,η,α,s

(C2xP)−1

=
∑

Q′η′β

[D(C2xP)]Q′η′β,Qηα f̂
†
−C2xk,Q′,η′,β,s

(B15)

can be defined for both fermion flavors f̂ † = b̂†, ĉ†. Its repre-
sentation matrix is the same for both symmetry sectors

[D(C2xP)]Q′η′β,Qηα = δQ′,−C2xQδη′,η(σx )βαζQ (B16)

and is consistent with the representation matrices for the
mirror-symmetric fermions of both P and C2x, defined in
Eqs. (B5) and (B11), respectively. The transformation C2xP

represents an anticommuting symmetry of both ĤTBG and ĤD

{C2xP, ĤTBG} = {C2xP, ĤD} = 0 (B17)

and satisfies (C2xP)2 = 1.
(4) Chiral symmetries. Aside from PH, we can define two

other anticommuting transformations C and C′, which are

known as the first and second chiral transformations [37,87],
respectively. Their action on the b̂† and ĉ† operators is given
by

X f̂
†
k,Q,η,α,s

X −1 =
∑

Q′η′β

[D(X )]Q′η′β,Qηα f̂
†
k,Q′,η′,β,s

, (B18)

where f̂ † = b̂†, ĉ† and X = C,C′. The representation matrices
for the two chiral operators are given by

[D(C)]Q′η′β,Qηα = δQ′,Qδη′,η(σz )βα,

[D(C′)]Q′η′β,Qηα = δQ′,Qδη′,η(σz )βαζQ,
(B19)

where ζQ is defined in Eq. (B12). Similarly to the PH transfor-
mation, the chiral transformation reflects a relation between
the positive and negative spectra of the Hamiltonian. For the
TBG-like contribution, ĤTBG is symmetric under the chiral
transformation only for specific parameter choices, namely,

{C, ĤTBG} = 0 if w0 = 0,

{C′, ĤTBG} = 0 if w1 = 0. (B20)

The mirror-antisymmeric sector Hamiltonian ĤD always has
the chiral symmetry

{C, ĤD} = {C′, ĤD} = 0. (B21)
Note, however, that in the case of ĤD, the first and second
chiral transformations are equivalent up to a valley-charge
rotation. To see this, consider the representation matrix for
CC′ which is given by [D(CC′)]Q′η′β,Qηα = δQ′,Qδη′,ηδβ,αζQ.
Since ĤD is defined in only one Q± sublattice for each valley,
[D(CC′)]Q′η′β,Qηα = δQ′,Q(τz )η′ηδβ,α , when acting on the b̂†

operators, implying that the two transformations are indeed
equivalent up to a valley-charge rotation.

The two chiral symmetry operators satisfy

C2 = 1, {C,C2z} = 0, [C, T ] = 0, [C, P] = 0, {C,C2zT } = 0, {C,C2zP} = 0,

C′2 = 1, [C′,C2z] = 0, {C′, T } = 0, {C′, P} = 0, {C′,C2zT } = 0, {C′,C2zP} = 0,
(B22)

as well as [C′,C] = 0.

(5) Effective low-energy symmetry L. In this paper, we will
be primarily interested in the low-energy physics of ĤD. Con-
sider therefore a simple h(δk) = δk · σ Dirac Hamiltonian.
Letting δk = k − q1, we see that h(δk) is exactly equivalent
to hD,+

q1
(k). The Hamiltonian h(δk) has three distinct “sym-

metries”

h(δk) = −h(−δk), (B23)

σzh(δk)σ−1
z = −h(δk), (B24)

σxh(δk)σ−1
x = h∗(δk). (B25)

We first note that Eq. (B24) is equivalent to the first chiral
symmetry of ĤD (given by the operator C), while Eq. (B25)
is equivalent with the C2zT symmetry of ĤD. Equation (B23),
however, represents a new emerging symmetry of ĤD which
we will discuss below.

In Figs. 3 and 4 of Appendix A 1, we saw that an excellent
approximation for ĤD in the low-energy limit is given by
Eq. (A20), where for the b̂

†
k,Q,η,α,s

operators we have consid-
ered only three Q points and the nearby k points in the MBZ.
The Bloch periodicity property from Eq. (A13) allows us to
recast the projected Dirac cone Hamiltonian HD into a slightly
simpler, albeit less symmetric form

HD =
∑

η,α,β,s

∑

k
|k−ηq1|��

[

hD,η
ηq1

(k)
]

αβ
b̂

†
k,ηq1,η,α,s

b̂k,ηq1,η,β,s.

(B26)
Note that the price we payed for including only one Q point
is that k now takes values outside the first MBZ, unlike the
displacement field Hamiltonian ĤU given in Eq. (A18), which
is defined inside the first MBZ.

We can now introduce the operator L which implements
the emerging low-energy symmetry of the Dirac Hamiltonian
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FIG. 5. The action of the low-energy symmetry of the projected
Dirac cone Hamiltonian HD. In (a), we illustrate the action of the L

transformation defined in Eq. (B27) on the b̂†
δk+q1,q1,+,α,s operators

from Eq. (B26) (here, we focus on valley η = +). More specifically,
L maps the vector k = δk + q1 from inside the first MBZ (shown
in dotted lines) to the vector k′ = −δk + q1, which lies outside the
first MBZ. Alternatively, in (b) we show that the action of L can
alternatively be defined on the b̂†

k,Q,η,α,s operators from Eq. (A20),
for which k lies inside the first MBZ. According to Eq. (B29), when
the angle � between δk and q1 obeys π � � < 4π/3, the operator L

maps the momentum k = δk + q1 to k′ = −δk + q2, both of which
lie in the first MBZ. We note that the resulting momenta k′ in (a) and
(b) are identical, up to a reciprocal moiré lattice vector.

corresponding to Eq. (B23). Its action is only specified on the
b̂

†
δk+ηq1,ηq1,η,α,s

operators from Eq. (B26), for |δk| � � and
can be written as

Lb̂
†
δk+ηq1,Q,η,α,s

L−1 =
∑

Q′η′β

[D(L)]Q′η′β,Qηα b̂
†
−δk+η′q1,Q′,η′,β,s

,

(B27)
where the representation matrix is given by

[D(L)]Q′η′β,Qηα = δQ′,Qδη′,ηδβ,α. (B28)

We stress the fact that the action of this operator is only
defined for b̂

†
δk+ηq1,Q,η,α,s, where Q = ηq1, as shown schemat-

ically in Fig. 5(a). If instead we chose to formulate our
problem in terms of the b̂† operators of Eq. (A20), δk + ηq1

and −δk + ηq1 need to be brought in the first MBZ by using
Eq. (A13). This, however, results in a more complicated, yet
equivalent, form of the action of L on the b̂† operators, which,
for completeness, we include below. Defining � to be the an-
gle between δk and ηq1 measured in the clockwise direction,
we must have

Lb̂
†
δk+ηq2,ηq2,η,α,s

L−1 = b̂
†
−δk+ηq1,ηq1,η,α,s

, 0 � � < π/3,

Lb̂
†
δk+ηq2,ηq2,η,α,s

L−1 = b̂
†
−δk+ηq3,ηq3,η,α,s

, π/3��<2π/3,

Lb̂
†
δk+ηq1,ηq1,η,α,s

L−1 = b̂
†
−δk+ηq3,ηq3,η,α,s

, 2π/3 � � < π,

Lb̂
†
δk+ηq1,ηq1,η,α,s

L−1 = b̂
†
−δk+ηq2,ηq2,η,α,s

, π � � < 4π/3,

Lb̂
†
δk+ηq3,ηq3,η,α,s

L−1 = b̂
†
−δk+ηq2,ηq2,η,α,s

, 4π/3��<5π/3,

Lb̂
†
δk+ηq3,ηq3,η,α,s

L−1 = b̂
†
−δk+ηq1,ηq1,η,α,s

, 5π/3 � � < 2π.

(B29)

The transformations defined in Eq. (B29) are also illustrated
schematically in Fig. 5(b).

In what follows, we will choose to use the b̂† operators of
Eq. (B26) in discussing gauge fixing in Appendix C 4, as well
as the form factors of the interaction Hamiltonian in Appendix
F 3 a. Note, however, that we will always be able to return to
the more symmetrical b̂† of Eq. (A20) by simply using Bloch
periodicity in Eq. (A13).

The properties of the L operator can be discussed from
the action given in Eq. (B27). It represents an anticommut-
ing symmetry of the projected Dirac Hamiltonian, obeying
{HD, L} = 0. In addition, it also satisfies the following rela-
tions:

L2 = 1, [L,C2z] = 0, [L, T ] = 0, [L,C] = 0. (B30)

Finally, we note that L maps δk + ηq1 to −δk + ηq1, two
momentum points which are not related by any crystalline
symmetry. Therefore, L represents an emerging effective low-
energy symmetry of ĤD or of any low-energy Hamiltonian
with a π Berry phase (i.e., which contains only odd terms
in the low-energy momentum δk). Moreover, the L operator
can be combined with the crystalline C2z symmetry to afford
a δk-preserving (noncrystalline) transformation whose action
is defined on the operators b̂

†
δk+ηq1,Q,η,α,s

for |δk| � � and
Q = ηq1 by

C2zLb̂
†
δk+ηq1,Q,η,α,s

(C2zL)−1

=
∑

Q′η′β

[D(L)]Q′η′β,Qηα b̂
†
δk+η′q1,Q′,η′,β,s

, (B31)

where the representation matrix is given by

[D(C2zL)]Q′η′β,Qηα = δQ′,−Qδη′,−η(σx )βα. (B32)

The operator C2zL is an anticommuting symmetry of HD,
{C2zL, HD} = 0, and obeys (C2zL) = 1.

2. Symmetries in the U �= 0 case

(1) Discrete symmetries. The introduction of a perpendic-
ular displacement field breaks the C2x and mz symmetries
of TSTG. At the same time, C2z, C3z, and T remain good
symmetries of Ĥ0 and their representation matrices do not
change.

(2) U(2) × U(2) spin-charge rotation symmetry. Follow-
ing the introduction of U �= 0, the two valleys of TSTG do
remain decoupled. However, the two fermion flavors cou-
ple together breaking the initial global [U(2) × U(2)]ĉ ×
[U(2) × U(2)]b̂ symmetry into U(2) × U(2). The eight gen-
erators of this symmetry are given by

Ŝab =
∑

α, η

s, s′

∑

k

(τ a)ηη(sb)ss′

(

∑

Q∈Q0

ĉ
†
k,Q,η,α,s

ĉk,Q,η,α,s′

+
∑

Q∈Qη

b̂
†
k,Q,η,α,sb̂k,Q,η,α,s′



, (B33)

where a = 0, z and b = 0, x, y, z. In addition, we have defined
τ a and sa (a = 0, x, y, z) to be the 2 × 2 identity and Pauli
matrices in the valley and spin spaces, respectively.
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(3) Combined particle-hole transformations. Compared to
the U = 0 case, the introduction of a perpendicular displace-
ment field breaks both the commuting mirror mz symmetry, as
well as the anticommuting C2xP symmetry. The displacement
field Hamiltonian defined in Eq. (A18) anticommutes with mz,
but commutes with C2xP

{mz, ĤU } = [C2xP, ĤU ] = 0, (B34)

which represents the opposite situation to the TBG and Dirac
cone Hamiltonians, for which

{C2xP, ĤTBG + ĤD} = [mz, ĤTBG + ĤD]. (B35)

However, combining mz with C2xP affords an anticommuting
symmetry of Ĥ0 in the U �= 0 case, obeying

{mzC2xP, Ĥ0} = 0. (B36)

The action of mzC2xP is given by

(mzC2xP)ĉ†
k,Q,η,α,s

(mzC2xP)−1

=
∑

Q′η′β

[Dĉ(mzC2xP)]Q′η′β,Qηα ĉ
†
−C2xk,Q′,η′,β,s

,

(B37)
(mzC2xP)b̂†

k,Q,η,α,s
(mzC2xP)−1

=
∑

Q′η′β

[Db̂(mzC2xP)]Q′η′β,Qηα b̂
†
−C2xk,Q′,η′,β,s

,

with the representation matrices

[Dĉ(mzC2xP)]Q′η′β,Qηα = δQ′,−C2xQδη′,η(σx )βαζQ,

[Db̂(mzC2xP)]Q′η′β,Qηα = −δQ′,−C2xQδη′,η(σx )βαζQ,
(B38)

where ζQ = ±1 for Q ∈ Q±, respectively. As in the U = 0
case, the combined PH transformation satisfies (mzC2xP)2

= 1.
(4) Chiral symmetries. The TSTG Hamiltonian Ĥ0 defined

in Eq. (A14) has chiral symmetry for the same parameter
choices as ĤTBG, namely,

{mzC, Ĥ0} = 0 if w0 = 0,

{mzC
′, Ĥ0} = 0 if w1 = 0.

(B39)

APPENDIX C: GAUGE-FIXING OF THE

SINGLE-PARTICLE SPECTRUM

The symmetries presented in Appendix B yield certain
relations between the eigenstates of the single-particle Hamil-
tonian Ĥ0. These relations are crucial in deriving the enhanced
continuous symmetries of the interacting TSTG Hamiltonian
in Appendix G. We here present the gauge-fixing conven-
tions that will be used throughout the paper: they will prove
instrumental for obtaining an explicit form of the projected
interaction Hamiltonian in Appendix F.

1. Sewing matrices

To keep the discussion general, we will denote the wave

functions u
f̂

Qα;nη
(k) to be the single-particle eigenstates of the

Hamiltonian Ĥ f̂ , where f̂ † = b̂† for Ĥ f̂ = ĤD and f̂ † = ĉ†

for Ĥ f̂ = ĤTBG (see Appendix A 2). Moreover, for the sake

of brevity, we will consider the wave function u
f̂

Qα;nη
(k) as

a column vector u
f̂
nη(k) in the space of indices {Q, α}. Fur-

thermore, when a representation matrix D(g) of an operation

g defined in Eq. (B1) acts on a wave function u
f̂

nη′ (k), we
denote the resulting wave function in valley η for short as
∑

η′ [D(g)]ηη′u
f̂

nη′ (k), the components of which are given by
∑

Q′βη′ [D(g)]Qαη,Q′βη′u
f̂

Q′β;nη′ (k). Namely, we suppress the
indices {Q, α} of the representation matrix D(g) to streamline
notation.

When g is a symmetry operator satisfying [Ĥ f̂ , g] = 0

(or {Ĥ f̂ , g} = 0), if u
f̂

nη′ (k) is an eigenstate wave function at

momentum k, the wave function
∑

η′ [D f̂ (g)]ηη′u
f̂

nη′ (k) (an
additional complex conjugation is needed if g is antiunitary)
must also be an eigenstate wave function at momentum gk

at the same (or opposite) single-particle energy. This allows
us to define a sewing matrix corresponding to the symmetry

operator g and the eigenstates u
f̂

nη′ (k):

∑

η′

[D f̂ (g)]ηη′u
f̂

nη′ (k) =
∑

mη′

[

B
g

f̂
(k)
]

mη′,nη
u

f̂

mη′ (gk). (C1)

In the absence of a displacement field the single-particle
Hamiltonian can be decoupled into two commuting terms.
Therefore, we can gauge fix the wave functions of ĤTBG and
ĤD separately. In the energy band basis of ĤTBG and ĤD, a
symmetry g acts as

gĉ
†
k,n,η′,sg

−1 =
∑

m,η

[

B
g

ĉ(k)
]

mη,nη′ ĉ
†
gk,m,η,s

,

gb̂
†
k,n,η′,sg

−1 =
∑

m,η

[

B
g

b̂
(k)
]

mη,nη′ b̂
†
gk,m,η,s

. (C2)

2. Gauge fixing the mirror-symmetric operators

For the mirror-symmetric operators ĉ
†
k,n,η,s, the gauge

fixing was discussed at length in Refs. [37,86]. We will
only summarize the results here and refer the reader to
Refs. [37,86] for complete proofs. All sewing matrices are
closed within each pair of bands n = ±nB for any nB � 1.
Therefore, within each pair of PH-symmetric bands with band
indices n = ±nB, we will use ζ a and τ a (a = 0, x, y, z) to
denote the identity and Pauli matrices in the energy band
n = ±nB and the valley spaces, respectively. For all the sym-
metries that leave k invariant, the following k-independent
gauge fixings will be adopted in this paper:

B
C2zT

ĉ (k) = ζ 0τ 0, B
C2zP

ĉ (k) = ζ yτ y,
(C3)

BC
ĉ (k) = ζ yτ z, B

mz

ĉ (k) = ζ 0τ 0,

where the sewing matrix of the chiral symmetry operator is
only applicable in the first chiral limit, when w0 = 0. Addi-
tionally, we can further fix the relative gauge between wave
functions at momenta k and −k by fixing the sewing matrices
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DUMITRU CĂLUGĂRU et al. PHYSICAL REVIEW B 103, 195411 (2021)

of C2z and P:

B
C2z

ĉ (k) =
{

ζ 0τ x, k �= kMM

−ζ 0τ x, k = kMM

,

BT
ĉ (k) =

{

ζ 0τ x, k �= kMM

−ζ 0τ x, k = kMM

,

BP
ĉ (k) =

{

−iζ yτ z, k �= kMM

iζ yτ z, k = kMM

, (C4)

where kMM
denotes one of the three equivalent MM points in

the MBZ [as shown in Fig. 1(b)]. The reason for the addi-
tional minus sign of the sewing matrix BP

ĉ (k) at k = kMM
was

explained in Ref. [37]: the sewing matrix BP
ĉ (k) must have ad-

ditional minus signs at an odd number of the four P-invariant
momenta due to the odd topological winding number of the
n = ±1 bands protected by C2zT . Because the transformations
C2zT and C2zP have been gauge fixed in a k-independent
manner in Eq. (C3), the sewing matrices B

C2z

ĉ and BT
ĉ also have

additional minus signs at k = kMM
.

In addition to the gauge-fixing conditions given above, we
fix the relative sign between the single-particle wave functions
uĉ

+,η(k) and uĉ
−,η(k) imposing [37]

lim
q→0

|u†ĉ
nη(k + q)uĉ

nη(k) − u
†ĉ
−nη(k + q)uĉ

−nη(k)| = 0. (C5)

3. Chern band basis for the mirror-symmetric operators

For the future discussion of the many-body states, we also
introduce the Chern band basis [28,29,37,86] within the low-
est two bands in each valley-spin flavor η = ±, as defined in
Refs. [37,86]. Under the gauge fixings of Eqs. (C3) and (C5),
the Chern band basis operators are defined by

d̂
†
k,eY ,η,s

=
1

√
2

(ĉ†
k,+1,η,s

+ ieY ĉ
†
k,−1,η,s

), (C6)

where eY = ±1. As proven in Refs. [37,86], the operators
d̂

†
k,eY ,η,s for k ∈ MBZ and fixed eY , η, and s correspond to a

Chern band carrying Chern number eY .

4. Gauge fixing the mirror-antisymmetric operators

For the mirror-antisymmetric operators b̂
†
k,n,η,s

, we will
focus on the C2z, T , and C symmetries, which are compatible
with a crystalline lattice, as well as on the low-energy emerg-
ing symmetry L, which is not. Note that we will not consider
the second chiral transformation C′, as it is equivalent to C

up to a valley-charge rotation, as shown in Appendix B 1. For
each valley η, we will restrict ourselves to the projected bands
corresponding to n = ±1, as well as to k ∈ Ai

η, as defined in
Eq. (A19). Similarly to the discussion surrounding Eq. (B27),
however, we will temporarily allow k to be outside of the first
MBZ, and instead consider the points k = δk + ηq1, where
|δk| � �.

The action of the symmetry operation g on the momen-
tum k can be defined straightforwardly in the case of the
crystalline symmetries: for g = C2z or g = T , gk = −k, while
for g = C, gk = k. In the case of the emerging symmetry
g = L, we must have that g(δk + ηq1) = −δk + ηq1, where
|δk| � �. In what follows, we will parametrize the sewing
matrices according to δk and adopt the following shorthand

notation:
[

B
g

b̂
(δk)

]

mη,nη′ ≡
[

B
g

b̂
(δk + ηq1)

]

mη,nη′ (C7)

for a given transformation g. For example, using the shorthand
notation, the action of the L transformation reads as

Lb̂
†
δk+η′q1,n,η′,sL

−1 =
∑

m,η

[

B
g

b̂
(δk)

]

mη,nη′ b̂
†
−δk+ηq1,m,η,s

. (C8)

As in the case of the ĉ
†
k,n,η,s

operators, the sewing matrices are
closed within the n = ±nB bands subspace (for any integer
nB > 0). We will therefore use ζ a and τ a (a = 0, x, y, z) to
denote the identity and Pauli matrices in the energy band n =
±nB and the valley spaces, respectively.

We start by fixing the sewing matrices for the δk-
preserving transformations in a δk-independent way. The
sewing matrix for C2zT can be chosen to be

B
C2zT

b̂
(δk) = ζ 0τ 0. (C9)

At the same time, the sewing matrix for the first chiral sym-
metry must have the form

[

BC

b̂
(δk)

]

mη,nη′ = δη,η′δ−m,ne
iφC

n,η′ , (C10)

where φC
n,η′ represents a phase dependent on the band and

valley. Because {C,C2zT } = 0 and C2 = 1, the sewing matrix
for C must satisfy the requirements

BC

b̂
(δk)BC2zT

ĉ (δk) = −B
C2zT

ĉ (δk)B∗C

b̂
(δk)

and BC

b̂
(δk)BC

b̂
(δk) = 1. (C11)

We are therefore free to choose BC

b̂
(δk) = ζ yτ z, as in the

mirror-symmetric sector. Finally, the transformation C2zL

must have a sewing matrix of the form

[

B
C2zL

b̂
(δk)

]

mη,nη′ = δ−η,η′δ−m,ne
iφ

C2zL

n,η′ , (C12)

which owing to {C2zL,C} = 0, [C2zL,C2zT ] = 0, and
(C2zL)2 = 1 must obey

BC

b̂
(δk)BC2zL

b̂
(δk) = −B

C2zL

b̂
(δk)BC

b̂
(δk), (C13)

B
C2zT

b̂
(δk)B∗C2zL

b̂
(δk) = B

C2zL

b̂
(δk)BC2zT

b̂
(δk), (C14)

B
C2zL

b̂
(δk)BC2zL

b̂
(δk) = 1, (C15)

implying that B
C2zL

b̂
(δk) = ζ yτ y, as in the mirror-symmetric

case for C2zP.
Having fixed the sewing matrices for the δk-preserving

transformation, we now consider whether δk-independent
sewing matrices can be found for any of the non-δk-
preserving symmetries C2z, T , and L:

[

B
C2z

b̂
(δk)

]

mη,nη′ = δ−η,η′δm,ne
iφ

C2z

n,η′ ,

[

BT

b̂
(δk)

]

mη,nη′ = δ−η,η′δm,ne
iφT

n,η′ ,

[

BL

b̂
(δk)

]

mη,nη′ = δη,η′δ−m,ne
iφL

n,η′ . (C16)

As we are interested in a δk-independent gauge fixing, we will
temporarily suppress the δk parameter of the sewing matrices.
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To be compatible with the gauge fixing of the sewing matrices
B

C2zL

b̂
(δk) and B

C2zT

b̂
(δk), we must have that

B
C2z

b̂
BT

b̂
= BT

b̂
B

∗C2z

b̂
= ζ 0τ 0, (C17)

B
C2z

b̂
BL

b̂
= ζ yτ y. (C18)

We first try to fix the sewing matrices corresponding to T and
C2z which satisfy

BT

b̂
B∗T

b̂
= B

C2z

b̂
B

C2z

b̂
= 1, (C19)

because T 2 = C2
2z = 1. Additionally, the commutation re-

lations [C2zT, T ] = [C2zT,C2z] = 0 together with Eq. (C9)
imply that the sewing matrices of T and C2z must be real. On
the other hand, [T,C] = {C2z,C} = 0 and so

BT

b̂
B∗C

b̂
− BC

b̂
BT

b̂
= B

C2z

b̂
BC

b̂
+ BC

b̂
B

C2z

b̂
= 0. (C20)

The only way Eqs. (C17), (C19) and (C20) can be satisfied
is if B

C2z

b̂
= BT

b̂
= ζ 0τ x. However, this choice is incompatible

with the commutation relations [C2zL, T ] = [C2zL,C2z] = 0,
which would require the δk-independent sewing matrices of
C2z and T to commute with B

C2zL

b̂
= ζ yτ y. Therefore, we con-

clude that the sewing matrices B
C2z

b̂
(δk) and BT

b̂
(δk) have to be

δk dependent.
Alternatively, it would have been impossible to gauge fix

BL

b̂
(δk) first in a δk-independent manner, as that would have

implied a δk-independent sewing matrix for C2z, leading to
another contradiction. Hence, the only symmetry transfor-
mations for which we can choose δk-independent sewing
matrices are C2zT , C2zL, C, and mz for which the sewing
matrices are given by

B
C2zT

b̂
(δk) = ζ 0τ 0, B

C2zL

b̂
(δk) = ζ yτ y,

BC

b̂
(δk) = ζ yτ z, B

mz

b̂
(δk) = −ζ 0τ 0, (C21)

where C is an anticommuting symmetry of the Dirac Hamil-
tonian for all interlayer hoppings w0, w1.

APPENDIX D: APPROXIMATIONS OF THE

SINGLE-PARTICLE SPECTRUM

This Appendix details the various approximations for
the single-particle spectrum of TSTG that are mentioned in
Sec. IV. We first introduce a modified tripod model (similar to
the one derived in Ref. [3]) in order to qualitatively understand
the band structure of TSTG near the KM points for U �= 0.
This simplified tripod model paves the road toward deriving
various quantitative k-dependent perturbation schemes for the
low-energy single-particle Hamiltonian of TSTG in the pres-
ence of displacement field. These will ultimately allow us to
obtain the single-particle eigenstates of TSTG analytically in
terms of the single-particle eigenstates of ĤTBG.

1. A tripod model of TSTG with displacement field

To gain a better understanding of how the TBG Hamil-
tonian ĤTBG is influenced by the coupling with the Dirac
cone Hamiltonian ĤD in the presence of a displacement field
(U �= 0), it is instructive to consider a simple model in con-
junction with a series of analytically tractable approximations.
For this purpose, we focus on the η = + valley near the
KM point (located at k = q1) and employ a modified tripod
model [3]. This is equivalent to considering only four Q

points in the Q± sublattices, namely, Q+ = {q1} and Q− =
{2q1, q1 + q2, q1 + q3}. We write the single-particle eigen-
states as

|
(k)〉=
∑

α

[

3
∑

i=0

(

ψi,α (k)ĉ†
k,Qi,+,α,s

)

+ψD,α (k)b̂†
k,Q0,+,α,s

]

|0〉,

(D1)

where we have denoted Qi = q1 + qi for i =
1, 2, 3 and Q0 = q1. The first-quantized Hamilto-
nian acting on the 10-dimensional spinor 
T (k) =
(ψT

0 (k), ψT
1 (k), ψT

2 (k), ψT
3 (k), ψT

D (k)) is given by

HTri =



















δk · σ T ′
1 T ′

2 T ′
3

U
2 1

T ′
1 (δk − q1) · σ 0 0 0

T ′
2 0 (δk − q2) · σ 0 0

T ′
3 0 0 (δk − q3) · σ 0

U
2 1 0 0 0 δk · σ



















, (D2)

with δk = k − q1 and T ′
i = Ti

√
2 (for i = 1, 2, 3). As required from Eq. (A18), the displacement field only couples the Dirac

cone and the TBG fermions at Q0. In what follows, we will suppress the momentum k variable of the 2- and 10-dimensional
spinors. For an eigenstate 
 of energy E , we must have

δk · σψ0 +
3
∑

j=1

T ′
j ψ j +

U

2
ψD = Eψ0, (D3)

T ′
i ψ0 + (δk − qi ) · σψi = Eψi, (D4)

U

2
ψ0 + δk · σψD = EψD. (D5)
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Using Eqs. (D4) and (D5), we can eliminate ψD and ψi by writing them in terms of ψ0 as

ψD =
E + δk · σ

E2 − δk2

U

2
ψ0, ψi =

E + (δk − qi ) · σ

E2 − (δk − qi )2 T ′
i ψ0, (D6)

and cast Eq. (D3) in the form

δk · σψ0 +
3
∑

j=1

T ′
j

[E + (δk − q j ) · σ]

E2 − (δk − q j )2 T ′
j ψ0 +

U 2

4

E + δk · σ

E2 − δk2
ψ0 = Eψ0. (D7)

We are interested in the low-energy solutions of Eq. (D7) near the KM point and therefore we must have |δk| ∼ |E | ≪ 1. The
denominator of the second term in Eq. (D7) can thus be expanded as

1

E2 − (δk − qi )2 =
−1

1 − (E2 − δk2 + 2δk · qi )
= −1 − 2δk · qi + O(|δk|2), (D8)

leading to

3
∑

j=1

T ′
j

[E + (δk − q j ) · σ]

E2 − (δk − q j )2 T ′
j = −

3
∑

j=1

T ′
j [E + δk · σ − q j · σ − (qi · σ)(δk · qi )]T

′
j + O(|δk|2)

= −3
(

w
′2
0 + w

′2
1

)

E − 3w
′2
0 δk · σ + 3

(

w
′2
0 − w

′2
1

)

δk · σ + O(|δk|2), (D9)

where for simplicity we have defined the rescaled hopping parameters w
′
0 = w0

√
2 and w

′
1 = w1

√
2. This allows us to simplify

Eq. (D7) into
[

(

1 − 3w
′2
1

)

δk · σ − E
(

3w
′2
0 + 3w

′2
1 + 1

)

+
U 2

4

E + δk · σ

E2 − δk2
+ O(|δk|2)

]

ψ0 = 0,

{[

U 2

4
+
(

1 − 3w
′2
1

)(

E2 − δk2)
]

δk · σ − E

[

(

3w
′2
0 + 3w

′2
1 + 1

)

(E2 − δk2) −
U 2

4

]

+ O(|δk|4)

}

ψ0 = 0,

(D10)

where E2 − δk2 �= 0. This eigenvalue equation has nontrivial solutions for ψ0 only if
[

U 2

4
+
(

1 − 3w
′2
1

)

(E2 − δk2)

]

δk = ±E

[

(

3w
′2
0 + 3w

′2
1 + 1

)

(E2 − δk2) −
U 2

4

]

, (D11)

which leads to the following four-band dispersion relation:

E = ±
δk(3w

′2
0 + 2) ±

√

9δk2
(

w
′2
0 + 2w

′2
1

)2 + U 2
(

3w
′2
0 + 3w

′2
1 + 1

)

2
(

3w
′2
0 + 3w

′2
1 + 1

) . (D12)

By expanding Eq. (D12) in δk to linear order, one can see
that the displacement field splits the two Dirac cones (one
stemming from ĤTBG and the other one, from ĤD) away from
zero

E = ±
δk
(

3w
′2
0 + 2

)

2
(

3w
′2
0 + 3w

′2
1 + 1

) ±
U

2
√

3w
′2
0 + 3w

′2
1 + 1

. (D13)

In Figs. 3 and 4, we compare the low-energy spectrum
obtained from Eq. (D12) with the one computed by numer-
ical diagonalizing Ĥ0 with a large number of Q points. This
simplified tripod model is seen to predict the appropriate
qualitative features of the single-particle energy spectrum near
the KM point. Moreover, in the limit U = 0, Eq. (D12) reduces
to the high-velocity Dirac cone spectrum (E = ±δk) and the
TBG tripod approximation spectrum of Ref. [3] (with the
tunneling amplitudes rescalled by a factor of

√
2)

E = ±
δk
(

1 − 3w
′2
1

)

(

3w
′2
0 + 3w

′2
1 + 1

) . (D14)

Finally, we note that a similar tripod model exists at the K ′
M

point in valley η = +, but because the Dirac cone bands are
much higher in energy in this region of the MBZ, the effects
of HD can be ignored for the low-energy physics. Therefore, a
tripod model for TSTG near the K ′

M point in valley η = + is
entirely equivalent to the tripod model introduced for ordinary
TBG [3].

2. Single-particle spectrum in the presence of displacement field

Having developed an intuition for the effect of the displace-
ment field coupling on the TSTG single-particle spectrum,
we now turn toward more quantitative perturbation schemes.
As we are ultimately interested in the low-energy physics
of TSTG, one approach would be to first consider the
single-particle spectrum of the full TSTG Hamiltonian from
Eq. (A14) and then project into its low-energy eigenstates. In
our case, however, a better approach is to consider the TBG
Hamiltonian of Eq. (A15) projected into its flat bands and then

hybridize it with the high-velocity Dirac cone in the presence
of displacement field.

195411-22



TWISTED SYMMETRIC TRILAYER GRAPHENE: … PHYSICAL REVIEW B 103, 195411 (2021)

a. Perturbative effect of the displacement field

We assume that w0 � 0.8w1, which implies the existence
of a sizable gap between the active bands (n = ±1) and the
passive bands of the TBG Hamiltonian: in particular, the ac-
tive band bandwidth ω is much smaller that the gap [36]. The
approach of starting from the projected TBG single-particle
Hamiltonian (henceforth denoted without a hat)

HTBG =
∑

|n|=1

∑

η,s

∑

k∈MBZ

ǫ ĉ
n,η(k)ĉ†

k,n,η,s
ĉk,n,η,s, (D15)

rather than the unprojected one is justified by using per-
turbation theory arguments. For the experimentally relevant
values of the displacement field [131] (corresponding to U <

0.3), we can develop a perturbation theory in U for the hy-
bridization between the two mirror-symmetry sectors. The
hybridization between the TBG active bands and the Dirac
cone Hamiltonian happens already at first order in U , while
mixing between the TBG active and passive bands happens
only as a second-order virtual process in U .

The low-energy physics of TSTG is therefore governed by
the Hamiltonian

H0 = HTBG + ĤD + ĤU , (D16)

where the projected TBG Hamiltonian was given by
Eq. (D15), while the Dirac cone and displacement field con-

tributions are, respectively, given by

ĤD =
∑

k∈MBZ
η, s

∑

α,β

3
∑

i=1

[

hD,η
ηqi

(k)
]

αβ
b̂

†
k,ηqi,η,α,s

b̂k,ηqi,η,β,s (D17)

and

ĤU =
U

2

∑

k∈MBZ
η, s

∑

α

3
∑

i=1

∑

|n|=1

(

uĉ
ηqiα;nη(k)

× b̂
†
k,ηqi,η,α,s

ĉk,n,η,s + u∗ĉ
ηqiα;nη(k)

× ĉ
†
k,n,η,s

b̂k,ηqi,η,α,s

)

. (D18)

Among other things, we checked numerically the validity
of the TSTG Hamiltonian from Eq. (D16) in the first two
columns of Figs. 6 and 7. The low-energy TSTG spectrum
obtained from Eq. (D16) and the one obtained from Ĥ0 =
ĤTBG + ĤD + ĤU (i.e., starting from the unprojected TBG
Hamiltonian) are consistent both in energy and eigenstates to
an error smaller than 1%. Moreover, as discussed in Appendix
A 1, we have restricted to only three plane-wave states (i.e., Q

points) in the expression of ĤD. However, the eigenstates of
the TBG active bands are evaluated in all generality on the Q±
sublattice using the approximations discussed in Ref. [36].

For the sake of making this Appendix self-contained, we
briefly review the notation provided in Sec. IV C. The single-
particle eigenstates of H0 for valley η and spin s labeled by m

are given by

|
η,s,m(k)〉 =

[

3
∑

i=1

∑

α

(ψη,s,m
i,α (k)b̂†

k,ηqi,η,α,s) +
∑

|n|=1

φη,s,m
n (k)ĉ†

k,n,η,s

]

|0〉. (D19)

In Eq. (D19), we have defined three two-component spinors on the sublattice space ψ
η,s,m
i (k) (for i = 1, 2, 3), corresponding to

the three Dirac points in the MBZ, and the two-component spinor in the space of the n = ±1 active TBG bands φη,s,m(k). We
have also employed m to label the different bands of H0. The single-particle eigenvalue equation

H0|
η,s,m(k)〉 = Eη,m(k)|
η,s,m(k)〉 (D20)

can be written in matrix form as














Eη(k) U
†η

1 (k) U
†η

2 (k) U
†η

3 (k)

U
η

1 (k) h
D,η
ηq1

(k) 0 0

U
η

2 (k) 0 h
D,η
ηq2

(k) 0

U
η

3 (k) 0 0 h
D,η
ηq3

(k)



























φη,s,m(k)

ψ
η,s,m

1 (k)

ψ
η,s,m

2 (k)

ψ
η,s,m

3 (k)













= Eη,m(k)













φη,s,m(k)

ψ
η,s,m

1 (k)

ψ
η,s,m

2 (k)

ψ
η,s,m

3 (k)













, (D21)

where we have defined the 2 × 2 diagonal energy matrix for
the TBG active bands in valley η,

Eη(k) =

(

ǫ ĉ
+1,η(k) 0

0 ǫ ĉ
−1,η(k)

)

, (D22)

as well as the displacement field 2 × 2 perturbation matrices

[

U
η
i (k)

]

α,n
=

U

2
uĉ

ηqiα;nη(k) (D23)

for i = 1, 2, 3. In what follows, we will temporarily suppress
the m, η, and s indices as well as the momentum k parameter.
In addition, we will introduce the shorthand notation

hi ≡ hD,η
ηqi

(k) (D24)

for i = 1, 2, 3.
There are two regions of interest pertaining to the low-

energy eigenstates of H0. When k is away from the Dirac
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FIG. 6. Various approximations used to compute the single-particle low-energy spectrum of TSTG in the presence of displacement
field in the nonchiral limit. For each row, the first panel denotes the unapproximated spectrum [computed as in Figs. 3(a) and 3(c)],
while the second panel denotes the spectrum obtained numerically from the 8 × 8 Hamiltonian in Eq. (D21). In the third to fifth panels,
we always approximate the spectrum away from the Dirac points of the MBZ using Eq. (D28). For the energy spectrum near the Dirac
points, we employ the first, second, and third approximations of Appendix D 2 c in the third, fourth, and fifth panels, respectively. We use a
different cutoff � for the each value of the displacement field U , namely, � = 0.1, 0.175, and 0.2 for U = 0.1, 0.2, and 0.3, respectively.
For each approximation, the bands are colored according to the overlap between the corresponding approximated and unapproximated
single-particle wave functions. This overlap is always greater than 0.99. The values of the TSTG parameters are given as an inset for each
plot.

points, i.e., k ∈ Cη, where we have defined the region

Cη = MBZ \
3
⋃

i=1

Ai
η (D25)

in terms of the regions Ai
η introduced in Eq. (A19), the hy-

bridization between the eigenstates of ĤD and the active bands
of ĤTBG is suppressed by the difference in energy. One can
therefore avoid solving the 8 × 8 Hamiltonian in Eq. (D21)
and employ perturbation theory to find the effect of the dis-
placement on the active bands in this region. When k is
near any of the three Dirac points of ĤD in the MBZ, i.e.,
k ∈ Ai

η, we can no longer ignore the effects of the Dirac cone
bands and more refined approximation methods need to be
developed. We will now explore these two cases and attempt
to solve the Hamiltonian in Eq. (D21).

b. Perturbation theory away from the Dirac points

When k ∈ Cη, the hybridization between the active TBG
bands and the Dirac cone bands is suppressed by the differ-
ence in energy. We can therefore eliminate the ψi spinors of
Eq. (D21) by writing them in terms of the φ spinors:

ψi = (E − hi )
−1Uiφ. (D26)

This allows us to formulate our problem as a nonlinear eigen-
value equation for φ which simply reads as

[

E +
3
∑

i=1

U
†
i (E − hi )

−1Ui

]

φ = Eφ. (D27)

We expect the energy of the active bands to be only slightly
changed by the hybridization with the Dirac cone Hamiltonian
and have |E | ≪ |hi| = |k − ηqi|. For the low-energy bands
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FIG. 7. Various approximations used to compute the single-particle low-energy spectrum of TSTG in the presence of displacement field
in the chiral limit. The meaning of the panels is the same as in Fig. 6. All approximate models perform remarkably well, with no differences
from the exact Hamiltonian visible by eye.

of H0 we can thus ignore the E dependence in the denomi-
nator of the second term of Eq. (D27). This affords a major
simplification as the Hamiltonians hi can be readily inverted.

Introducing the notation σ
+ = (σx, σy) and σ

− = (−σx, σy)
to denote the Pauli vector corresponding to the two valleys
η = ±, the eigenvalue equation becomes

(

ǫ ĉ
+1,η(k) + B

η

+1,+1(k) B
η

+1,−1(k)

B
η

−1,+1(k) ǫ ĉ
−1,η(k) + B

η

−1,−1(k)

)

(

φ
η,s,m

+1 (k)

φ
η,s,m

−1 (k)

)

= Eη,m(k)

(

φ
η,s,m

+1 (k)

φ
η,s,m

−1 (k)

)

, (D28)

where we have defined the displacement field perturbation matrix

Bη
nm(k) =

U 2

4

3
∑

i=1

∑

α,β

u∗ĉ
ηqiα;nη(k)[(k − ηqi ) · σ

η]αβuĉ
ηqiβ;mη(k)

|k − ηqi|2
. (D29)

As Eq. (D28) is only a 2 × 2 matrix, it can be readily diagonalized to obtain the low-energy band dispersion

Eη,±1 =
ǫ ĉ
+1,η + ǫ ĉ

−1,η + B
η

+1,+1 + B
η

−1,−1 ±
√

[

ǫ ĉ
+1,η − ǫ ĉ

−1,η + B
η

+1,+1 − B
η

−1,−1

]2 + B
η

−1,+1B
η

+1,−1

2
. (D30)

The corresponding eigenstates can be found from the φ

spinors and Eq. (D26). We prove the validity of the approx-
imation from Eq. (D28) numerically in the third, fourth, and
fifth columns of Figs. 6 and 7 in both the nonchiral and (first)

chiral limits, respectively. However, a further approximation
can be used: as shown in Fig. 8, the weight of the mirror-
antisymmetric operators is small enough in this region of the
MBZ to approximate ψi ≈ 0. The effects of the displacement
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FIG. 8. The amplitude of the mirror-symmetric operators in the lowest-energy single-particle eigenstates of TSTG. We consider the overlap
between the unapproximated (|ψ〉) and approximated (|ψapp〉) wave functions corresponding to the lowest-energy conduction band for valley
η = + in the MBZ of TSTG. The approximated wave function |ψapp〉 is obtained directly from |ψ〉 by setting the amplitudes of all mirror-
antisymmetric creation operators to zero (i.e., |ψapp〉 = 1+mz

2 |ψ〉). The boundaries of the Ai
+ zones (for i = 1, 2, 3) are shown with red dashed

lines. We consider the nonchiral limit (w0/w1 = 0.8, w1 = 0.408) in (a)–(c) and the chiral limit (w0 = 0, w1 = 0.408) in (d)–(f). The values
of the displacement field are U = 0.1 in (a) and (d), U = 0.2 in (b) and (e), and U = 0.3 in (c) and (f). Away from the high-velocity Dirac
points in the TSTG MBZ, the weight of the mirror-antisymmetric operators in the low-energy eigenstates is negligible.

field for k ∈ Cη can then be captured by the following effective
Hamiltonian which is second order in the displacement field:

H
(ĉ)

U =
∑

|n|, |m|=1
η, s

∑

k∈Cη

Bη
nm(k)ĉ†

k,n,η,sĉk,n′,η,s. (D31)

Finally, we note that if U 2/|k − ηqi| ≪ ω for i = 1, 2, 3, then
the active TBG band states will not be significantly perturbed
by the displacement field.

c. Perturbation theory near the Dirac points

Near any of the three Dirac points in the MBZ, the hy-
bridization between the TBG active bands and the folded
Dirac cone Hamiltonian is significant. If k is near the jth
Dirac point in the MBZ (i.e., k ∈ A

j
η), we will have |h j | ≪

1, but |hi| ≈
√

3, for i �= j. This implies that while the hy-
bridization between the TBG active bands and the jth Dirac
Hamiltonian will be relevant, there will be little to no mixing
with the Dirac cone bands stemming from the other two Dirac
points of ĤD in the MBZ. We can therefore approximate
ψi ≈ 0 for i �= j and write the single-particle TSTG wave
functions as

|
η,s,m(k)〉 =

[

∑

α

(

ψ
η,s,m
j,α (k)b̂†

k,ηq j ,η,α,s

)

+
∑

n=±1

φη,s,m
n (k)ĉ†

k,n,η,s

]

|0〉, (D32)

reflecting the four bands per spin per valley which are relevant
for the low energy of TSTG, namely, the two TBG active
bands and two Dirac cone bands. The eigenvalue equation
H0|
η,s,m(k)〉 = Eη,m(k)|
η,s,m(k)〉 can then be written as a
4 × 4 matrix eigenvalue equation




Eη(k) U
†η
j (k)

U
η
j (k) h

D,η
ηq j

(k)





(

φη,s,m(k)

ψ
η,s,m
j (k)

)

= Eη,m(k)

(

φη,s,m(k)

ψ
η,s,m
j (k)

)

.

(D33)
We will call this the first approximation. While this Hamilto-
nian cannot be solved analytically, we can employ a series of
approximations to make the computations tractable. We begin
by eliminating the φ spinor to obtain a nonlinear eigenvalue
equation for ψ j :
[

h j + U j

E − ǫ ĉ
++ǫ ĉ

−
2 + ǫ ĉ

+−ǫ ĉ
−

2 σz

(

E − ǫ ĉ
++ǫ ĉ

−
2

)2 −
( ǫ ĉ

+−ǫ ĉ
−

2

)2
U

†
j

]

ψ j = Eψ j, (D34)

where we have suppressed the valley index and made the
dependence on the k parameter implicit. We then ignore the

term ǫ ĉ
++ǫ ĉ

−
2 to first order in E (an approximation which is exact

in the chiral limit, where ǫ ĉ
− = −ǫ ĉ

+), obtaining
[

h j + U j

E + ǫ ĉ
+−ǫ ĉ

−
2 σz

E2 −
( ǫ ĉ

+−ǫ ĉ
−

2

)2
U

†
j

]

ψ j = Eψ j . (D35)

The solution to Eq. (D35) can be found as an asymptotic

series in the small parameter ǫ ĉ
+−ǫ ĉ

−
2 : to first order in ǫ ĉ

+−ǫ ĉ
−

2 ,
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the nonlinear eigenvalue equation becomes
[

h j + U j

E + ǫ ĉ
+−ǫ ĉ

−
2 σz

E2
U

†
j

]

ψ j = Eψ j, (D36)

an approximation which we call the second approximation.
Solving this equation is still impossible to do analytically, so

we take one further simplification and ignore the ǫ ĉ
+−ǫ ĉ

−
2 term

altogether to afford the third approximation
[

h j +
U jU

†
j

E

]

ψ j = Eψ j . (D37)

Since h j is a 2 × 2 matrix, finding the energies of this equation
essentially amounts to solving for the roots of a fourth-order
polynomial, a cumbersome task to do analytically. In the chi-
ral limit, however, under the gauge fixing of Eq. (C3), we have
that

∑

β

(σz )αβ [U j]β,n
= η

∑

n′

[U j]α,n′ (σy)
n′n, (D38)

which translates to σzU jU
†
j σz = U jU

†
j , implying that the term

U jU
†
j is essentially a 2 × 2 diagonal matrix

U jU
†
j =

(

A 0
0 D

)

, (D39)

where A and D are real functions of k, obtained from the
moiré eigenstates. The characteristic equation of the third
approximation

det

[

E2 − Eh j −
(

A 0
0 D

)]

= 0 (D40)

is equivalent to finding the roots of a second-order polynomial
in E2, an equation which can be readily solved analytically.

We note that the validity of Eq. (D33) (i.e., the first approx-
imation), as well as of the second and third approximations
was checked numerically in Figs. 6 and 7 in the third, fourth,
and fifth columns, respectively. In what follows, we will re-
strict to the first approximation from Eq. (D33) and write the
corresponding projected displacement field Hamiltonian as

H
(b̂ĉ)

U =
U

2

3
∑

i=1

∑

k∈Ai
η

∑

|n| = 1
α

(

uĉ
ηqiα;nη(k)

× b̂
†
k,ηqi,η,α,s

ĉk,n,η,s + H.c.
)

. (D41)

In terms of the energy band basis, the projected displacement
field Hamiltonian reads as

H
(b̂ĉ)

U =
∑

|n|, |m|=1
η, s

∑

|δk|��

[

Nη
mn(δk)

× b̂
†
δk+ηq1,m,η,s

ĉδk+ηq1,n,η,s + H.c.
]

, (D42)

where we have defined the displacement field overlap matrix

Nη
mn(δk) =

∑

α

u∗b̂
ηq1α;mη(δk + ηq1)uĉ

ηq1α;nη(δk + ηq1).

(D43)

For simplicity, in Eq. (D42) we have used the periodicity of
the energy band fermion operators (A24), as well as the em-
bedding relation of the single-particle wave functions (A23) to
bring together the zones Ai

η (for i = 1, 2, 3) into a full circular
region around the ηq1 point.

APPENDIX E: GAUGE FIXING THE SINGLE-PARTICLE

PROJECTED HAMILTONIAN

The discrete symmetries of the single-particle Hamiltonian
from Appendix B together with the gauge-fixing conditions in
Appendix C directly determine the explicit forms of the vari-
ous terms of the single-particle projected TSTG Hamiltonian.
The goal of this Appendix is to parametrize the various terms
appearing in the single-particle projected TSTG Hamiltonian
from Eq. (32) of Sec. IV D. The resulting parametrizations
will be used for the unambiguous identification of the con-
tinuous symmetry groups of the projected many-body TSTG
Hamiltonian in Appendix G, together with their correspond-
ing generators.

In what follows, we will find it useful to employ a series
of conventions pertaining to the energy band operators ĉ

†
k,n,η,s

and b̂
†
k,n,η,s

. For both mirror-symmetry sector operators, we
will use ζ a (with a = 0, x, y, z) to denote the identity and
Pauli matrices in the energy band subspace (restricting to the
pair of bands n = ±1), τ a (with a = 0, x, y, z) for the valley
subspace, and sa (with a = 0, x, y, z) for the spin subspace.

1. Parametrized forms of the single-particle projected

TBG and Dirac Hamiltonian

Independent of the gauge chosen in Appendix C, the form
of the Hamiltonians HTBG and HD in the energy band basis
is constrained by the symmetries discussed in Appendix B.
For the sake of completeness, we will list the resulting
parametrizations here.

a Parametrization of HTBG

The energies of the TBG active bands ǫ ĉ
n,η(k) can be

viewed as the elements of a k-dependent matrix which we
dub the TBG energy band matrix and which is diagonal in
the valley and energy band subspaces. The (unprojected) TBG
Hamiltonian from Eq. (A15) is symmetric under the combined
C2zP transformation

{ĤTBG,C2zP} = 0. (E1)

This implies that ǫ ĉ
n,η(k) = −ǫ ĉ

−n,−η(k) and so the TBG en-
ergy band matrix can be parametrized as

ǫ ĉ
n,η(k) = [ζ zτ 0]nn,ηηβ

ĉ
0 (k) + [ζ 0τ z]nn,ηηβ

ĉ
1 (k), (E2)

or in matrix notation

ǫ ĉ(k) = ζ zτ 0β ĉ
0 (k) + ζ 0τ zβ ĉ

1 (k). (E3)

The functions β ĉ
0,1(k) in Eq. (E3) represent real functions

whose exact form depends on the TBG band energies

β ĉ
0 (k) =

ǫ ĉ
+1,+(k) + ǫ ĉ

+1,−(k) − ǫ ĉ
−1,+(k) − ǫ ĉ

−1,−(k)

4
,

β ĉ
1 (k) =

ǫ ĉ
+1,+(k) − ǫ ĉ

+1,−(k) + ǫ ĉ
−1,+(k) − ǫ ĉ

−1,−(k)

4
. (E4)
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Additionally, as a consequence of the C2z commuting sym-
metry of ĤTBG, the TBG energy bands obey ǫ ĉ

n,η(k) =
−ǫ ĉ

n,−η(−k), which further imposes that

β ĉ
0 (k) = β ĉ

0 (−k) and β ĉ
1 (k) = −β ĉ

1 (−k). (E5)

In the (first) chiral limit (w0 = 0), the projected TBG Hamil-
tonian is also symmetric under the chiral transformation

{HTBG,C} = 0. (E6)

In this case, the band energies additionally satisfy ǫ ĉ
n,η(k) =

ǫ ĉ
−n,η(k), and thus β ĉ

1 (k) = 0. In the chiral limit, the TBG
energy band matrix can be written in the simple form

ǫ ĉ(k) = ζ zτ 0β ĉ
0 (k). (E7)

b. Parametrization of HD

Similar to the active bands of HTBG, we can also view
the band energies of the projected Dirac Hamiltonian from
Sec. IV D as the elements of a matrix diagonal in the energy
band and valley subspaces. The exact form of the Dirac en-
ergy bands from Eq. (35) allows the following straightforward
parametrization:

ǫ b̂
n,η(δk) = [ζ zτ 0]nn,ηη|δk|. (E8)

2. Parametrization of the projected displacement

field Hamiltonian

As shown in Appendix D, the projected displacement field

Hamiltonian has two contributions, H
(b̂ĉ)

U and H
(ĉ)

U , which
are defined in disjoint regions of the MBZ, one close and
one away from the Dirac points, and which are linear and
quadratic in the displacement field parameter U , respectively.
We will now discuss the parametrized forms for each contri-
bution.

a. Parametrized form of H
(b̂ĉ)
U

The first contribution to the displacement field Hamiltonian
from Eq. (D42) is written in terms of the energy band basis
operators of the TBG and Dirac cone sectors and the dis-
placement field overlap matrix N (δk), whose exact form was
given in Eq. (D43). Without explicitly solving for N (δk), we
will now analyze the constraints imposed on its form by the
symmetries of TSTG presented in Appendix B in conjunction
with the k-independent sewing matrices fixed in Appendix C.

(1) The antiunitary C2zT symmetry of TSTG has the same
k-independent sewing matrix for both the TBG and Dirac
cone eigenstates, i.e., B

C2zT

b̂
= B

C2zT

ĉ = ζ 0τ 0. Using the short-
hand notation from Eq. (C1), we obtain

Nη
mn(δk) =

U

2

∑

α

u∗b̂
ηq1α;mη(δk + ηq1)uĉ

ηq1α;nη(δk + ηq1)

=
U

2

∑

α,η1,η2

[

u†b̂
mη1

(δk + η1q1)
[

D†(C2zT )
]

ηη1

]

ηq1α

[

[D(C2zT )]ηη2
uĉ

nη2
(δk + η2q1)

]

ηq1α

=
U

2

∑

α, η1, η2
m′, n′

[

B
†C2zT

b̂

]

mη,m′η1
ub̂

η1q1α;m′η1
(δk + η1q1)u∗ĉ

η2q1α;n′η2
(δk + η2q1)

[

B
C2zT

ĉ

]

n′η2,nη
. (E9)

Equivalently, Eq. (E9) can be written in matrix form as

N (δk) = (ζ 0τ 0)N∗(δk)(ζ 0τ 0) = N∗(δk), (E10)

proving that the displacement field overlap matrix is real.
(2) In the (first) chiral limit, both the TBG and the Dirac

cone Hamiltonians are symmetric under the chiral transforma-
tion C, which has the k-independent sewing matrices BC

b̂
=

BC
ĉ = ζ yτ z. Correspondingly, the displacement field overlap

matrix obeys

Nη
mn(δk) =

U

2

∑

α

ub̂∗
ηq1α;mη(δk + ηq1)uĉ

ηq1α;nη(δk + ηq1)

=
U

2

∑

α,η1,η2

[

u†b̂
mη1

(δk + η1q1)
[

D†(C)
]

ηη1

]

ηq1α

×
[

[D(C)]ηη2
uĉ

nη2
(δk + η2q1)

]

ηq1α

=
U

2

∑

α, η1, η2
m′, n′

[

B
†C

b̂

]

mη,m′η1
u∗b̂

η1q1α;m′η1
(δk + η1q1)

× uĉ
η2q1α;n′η2

(δk + η2q1)
[

BC
ĉ

]

n′η2,nη
, (E11)

which in matrix form is equivalent to

N (δk) = (ζ yτ z )N (δk)(ζ yτ z ). (E12)

The displacement field overlap matrix is diagonal in valley
subspace and, as a consequence of Eq. (E10), its elements are
real. It can therefore always be parametrized as

N (δk) =
∑

b∈{0,z}

ζ 0τ bλ
(b̂ĉ)
0b

(δk) + ζ xτ bλ
(b̂ĉ)
xb

(δk)

+ iζ yτ bλ
(b̂ĉ)
yb

(δk) + ζ zτ bλ
(b̂ĉ)
zb

(δk), (E13)

where λ
(b̂ĉ)
ab

(δk) (for a = 0, x, y, z and b = 0, z) represent
generic real functions, whose exact form depends on the
single-particle wave functions of the TBG and Dirac Hamil-
tonians. Additionally, in the (first) chiral limit, due to the

constraint imposed by Eq. (E12), λ
(b̂ĉ)
ab

(δk) = 0 for a = x, z

and b = 0, z and so the displacement field overlap matrix must
be given by

N (δk) = ζ 0τ 0λ
(b̂ĉ)
00 (δk) + iζ yτ 0λ

(b̂ĉ)
y0 (δk)

+ ζ 0τ zλ
(b̂ĉ)
0z (δk) + iζ yτ zλ

(b̂ĉ)
yz (δk). (E14)
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b. Parametrized form of H
(ĉ)
U

The matrix B(k) given in Eq. (D29) governs the second-order contribution to the displacement field projected Hamiltonian,
away from the Dirac points. Here, we derive its parametrized form in a similar fashion to N (δk).

(1) Owing to the antiunitary C2zT symmetry of the TBG Hamiltonian with the k-independent sewing matrix B
C2zT

ĉ = ζ 0τ 0,
the matrix B(k) obeys

Bη
nm(k) =

U 2

4

3
∑

i=1

∑

α,β

u∗ĉ
ηqiα;nη(k)[(k − ηqi ) · σ

η]αβuĉ
ηqiβ;mη(k)

|k − ηqi|2

=
U 2

4

3
∑

i=1

∑

α, β

α′, β ′

u∗ĉ
ηqiα′;nη(k)(σx )α′α[(k − ηqi ) · σ

η]∗αβ (σx )ββ ′uĉ
ηqiβ ′;mη(k)

|k − ηqi|2

=
U 2

4

3
∑

i=1

∑

α, β

η1, η2

[

u†ĉ
nη1

(k)[D†(C2zT )]ηη1

]

ηqiα
[(k − ηqi ) · σ

η]∗αβ

[

[D(C2zT )]ηη2
uĉ

mη2
(k)
]

ηqiβ

|k − ηqi|2

=
U 2

4

3
∑

i=1

∑

α, β

η1, η2
m′, n′

[

B
†C2zT

ĉ

]

mη,m′η1

uĉ
η1qiα;m′η1

(k)[(k − ηqi ) · σ
η]∗αβu∗ĉ

η2qiβ;n′η2
(k)

|k − ηqi|2
[

B
C2zT

ĉ

]

n′η2,nη
. (E15)

Equivalently, Eq. (E15) can be written in matrix form as

B(k) = (ζ 0τ 0)B∗(k)(ζ 0τ 0) = B∗(k), (E16)

proving that the B(k) matrix is real.
(2) In the (first) chiral limit, the TBG Hamiltonian is symmetric under the chiral transformation C, which has the k-

independent sewing matrix BC
ĉ = ζ yτ z. Correspondingly, the displacement field perturbation matrix satisfies

Bη
nm(k) =

U 2

4

3
∑

i=1

∑

α,β

u∗ĉ
ηqiα;nη(k)[(k − ηqi ) · σ

η]αβuĉ
ηqiβ;mη(k)

|k − ηqi|2

= −
U 2

4

3
∑

i=1

∑

α, β

α′, β ′

u∗ĉ
ηqiα′;nη(k)(σz )α′α[(k − ηqi ) · σ

η]αβ (σz )ββ ′uĉ
ηqiβ ′;mη(k)

|k − ηqi|2

= −
U 2

4

3
∑

i=1

∑

α, β

η1, η2

[

u†ĉ
nη1

(k)[D†(C)]ηη1

]

ηqiα
[(k − ηqi ) · σ

η]αβ[[D(C)]ηη2
uĉ

mη2
(k)]ηqiβ

|k − ηqi|2

= −
U 2

4

3
∑

i=1

∑

α, β

η1, η2
m′, n′

[

B
†C
ĉ

]

mη,m′η1

u∗ĉ
η1qiα;m′η1

(k)[(k − ηqi ) · σ
η]αβuĉ

η2qiβ;n′η2
(k)

|k − ηqi|2
[

BC
ĉ

]

n′η2,nη
, (E17)

where we have used Eq. (B19). We can rewrite Eq. (E17) in an equivalent matrix form

B(k) = −(ζ yτ z )B(k)(ζ yτ z ). (E18)

The displacement field perturbation matrix is diagonal in valley subspace and, as a consequence of Eq. (E16), its elements
are real. It can therefore always be parametrized as

B(k) =
∑

b∈{0,z}

ζ 0τ bλ
(ĉ)
0b

(k) + ζ xτ bλ
(ĉ)
xb

(k) + iζ yτ bλ
(ĉ)
yb

(k) + ζ zτ bλ
(ĉ)
zb

(k), (E19)

where λ
(ĉ)
ab

(k) (for a = 0, x, y, z and b = 0, z) represent generic real functions, whose exact form depends on the single-particle
wave functions of the TBG Hamiltonian. Additionally, in the (first) chiral limit, due to the constraint imposed by Eq. (E18),
λ

(ĉ)
ab

(k) = 0 for a = 0, y and b = 0, z and so the displacement field perturbation matrix must be given by

B(k) = ζ xτ 0λ
(ĉ)
x0 (k) + ζ zτ 0λ

(ĉ)
z0 (k) + ζ xτ zλ(ĉ)

xz (k) + ζ zτ zλ(ĉ)
zz (k). (E20)
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APPENDIX F: INTERACTION HAMILTONIAN

In this Appendix, we derive the TSTG interaction Hamil-
tonian. First, we show how the electron-electron repulsion
Hamiltonian can be written using the fermion operators
defined on the moiré lattice in Eqs. (A11) and (A12) of Ap-
pendix A. We then project the TSTG interaction Hamiltonian
in the eigenstates of the single-particle projected Hamiltonian
from Eq. (32), namely, the active TBG bands and the low-
energy Dirac cone modes. We also show that the projected
TSTG Hamiltonian includes an effective Hartree-Fock poten-
tial arising from the TSTG bands that have been projected
away. Finally, we gauge fix the terms of the projected interac-
tion Hamiltonian according to the symmetries of Appendix B
and the gauge-fixing conditions of Appendix C.

1. Derivation of the interaction Hamiltonian

Here, we derive the low-energy interaction Hamiltonian
governing electron-electron repulsion in TSTG [37]. We start
by writing the Fourier transformation of the electron density
operators in terms of the low-energy fermion operators from

Eq. (A3) defined on the moiré lattice. Finally, we simplify the
expression of the interaction Hamiltonian by employing the
mirror-symmetric and -antisymmetric fermion operators.

a. Interaction Hamiltonian in the moiré lattice

For each graphene layer l in TSTG, we define the real-
space electron operators

â
†
R,α,s,l

=
1

√
N

∑

p∈BZl

e−ip·Rθ,l (R+tα )â
†
p,α,s,l

, (F1)

where R denotes the single-layer graphene unit-cell coordi-
nates, α represents the sublattice index, s is the electron spin,
and tα is the displacement of the atoms belonging to sublattice
α from the origin of the unit cell. Moreover, in Eq. (F1),
BZl is the BZ of the graphene layer l , while Rθ,l denotes the
rotation matrix corresponding to the twist in layer l relative
to the coordinates chosen in Fig. 1. Note that in this notation,
an atom belonging to layer l having the unit-cell coordinate
R and belonging to the sublattice α is located at position
Rθ,l (R + tα ). As discussed in Sec. II and Appendix A, the
low-energy physics is dominated by the electron states near
the Dirac points ±Kl , allowing us to approximate

â
†
R,α,s,l

≈
1

√
N

∑

η

∑

k∈MBZ

∑

Q∈Qη,l

e−i(ηKl +k−Q)·Rθ,l (R+tα )â
†
k,Q,η,α,s,l

, (F2)

where N represents the number of single-layer graphene unit cells and we have used the same notation as in Appendix A 1. The
approximation in Eq. (F2) consists in imposing a finite cutoff for the number of points in the Qη,l sublattice, such that we always
have |Q| ≪ Kl . Using the real-space operators â

†
R,α,s,l

, we can write the interaction Hamiltonian as

ĤI =
1

2

∑

R,R′

∑

α, s, l

α′, s′, l ′

V l,l ′ [Rθ,l (R + tα ) − Rθ,l ′ (R
′ + tα′ )] :â†

R,α,s,l
âR,α,s,l â

†
R′,α′,s′,l ′ âR′,α′,s′,l ′ :, (F3)

where V l,l ′ (r) represents the screened Coulomb interaction potential between two fermions located in layers l and l ′ which are
separated by the vector r in the plane of the single-layer graphene. In Eq. (F3), we have used :(. . . ): to denote normal ordering
for the fermion operators. The Coulomb interaction potential obeys the symmetry condition

V l,l ′ (r) = V l ′,l (r). (F4)

Defining the Fourier transformation of V l,l ′ (r) over the MBZ,

V l,l ′ (r) =
1

�tot

∑

G∈Q0

∑

q∈MBZ

e−(q+G)·rV l,l ′ (q + G), (F5)

where �tot represents the total area of the TSTG sample, we will only require that V l,l ′ (q + G) decays with |G| and becomes
negligible when |G| ∼ |Kl | (so that the interaction is diagonal in valley index), but will otherwise leave it unspecified for the
moment, to keep the discussion general.

We now introduce the interaction Hamiltonian in momentum space

ĤI =
1

2�tot

∑

G∈Q0

∑

q ∈ MBZ
l, l ′

V l,l ′ (q + G) :ρ l
G+qρ

l ′

−G−q: . (F6)

In Eq. (F6) the density operator for layer l is defined as

ρ l
G+q =

∑

R,α,s

ei(G+q)·Rθ,l (R+tα )â
†
R,α,s,l

âR,α,s,l , (F7)
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and can be reexpressed with the aid of Eq. (F2) as

ρ l
G+q =

1

N

∑

R,α,s

ei(G+q)·Rθ,l (R+tα )
∑

η,η′

∑

k, k′∈MBZ
Q∈Qη,l

Q′∈Qη′ ,l

e−i[(η−η′ )Kl +k−k′−Q+Q′]·Rθ,l (R+tα )â
†
k,Q,η,α,s,l

âk′,Q′,η′,α,s,l

=
∑

η, η′

α, s

∑

k, k′∈MBZ
Q∈Qη,l

Q′∈Qη′ ,l

∑

P

â
†
k,Q,η,α,s,l

âk′,Q′,η′,α,s,l ′e
iP·tαδ(η′−η)Kl −k+k′+Q−Q′+G+q,Rθ,l P, (F8)

where the sum indexed by P is over the reciprocal lattice of
single-layer graphene. In evaluating the summation over the
single-layer graphene real-space lattice vectors R, we have
employed the Poisson resummation formula

1

N

∑

R

eik·Rθ,l R =
∑

P

δk,Rθ,l P. (F9)

We now turn our attention toward simplifying the summations
in Eq. (F8). For this, we consider two possibilities:

(1) η = η′ (intravalley scattering). In this case, the
momentum-conserving δ function reads as

δ−k+k′+Q−Q′+G+q,Rθ,l P. (F10)

Since the interaction potential Vq+G only contributes for
|G| ≪ |Kl |, we have that | − k + k′ + Q − Q′ + G + q| ≪
|Kl |, and so the only nonvanishing terms in the sum from
Eq. (F8) correspond to P = 0.

(2) η = −η′ (intervalley scattering). In this case, the
momentum-conserving δ function becomes

δ−k+k′+Q−Q′+G+q,Rθ,l P−2ηKl
. (F11)

However, because 2ηKl is not a reciprocal vector of the
graphene layer l (whereas Rθ,l P is), |P − 2ηKl | ∼ |Kl |, and
so the δ function always vanishes.

Imposing η = η′ and P = 0 in Eq. (F8), we find that the
density operators simplify

ρ l
G+q =

∑

η,α,s

∑

k, k′ ∈ MBZ
Q, Q′ ∈ Qη,l

â
†
k,Q,η,α,s,l

âk′,Q′,η,α,s,l

× δ−k+k′+Q−Q′+G+q,0

=
∑

η,α,s

∑

k ∈ MBZ
Q ∈ Qη,l

â
†
k,Q,η,α,s,l

âk−q,G+Q,η,α,s,l , (F12)

where we have employed the Bloch periodicity from Eq. (A5).
In what follows, we will find it easier to recast the

interaction Hamiltonian in Eq. (F6) into a more sym-
metrical form. We will therefore introduce the Fourier
transformation of the electron density relative to the fill-
ing of single-layer graphene at the charge neutral point, for
which 〈â†

k,Q,η,α,s,l
âk−q,G+Q,η,α,s,l 〉 = 1

2δq,0δG,0. The interac-
tion Hamiltonian then becomes

ĤI =
1

2�tot

∑

G∈Q0

∑

q∈MBZ
l, l ′

V l,l ′ (q + G)δρ l
G+qδρ

l ′

−G−q, (F13)

where the relative electron density operators are defined as

δρ l
G+q =

∑

η,α,s

∑

k∈MBZ
Q∈Qη,l

(

â
†
k,Q,η,α,s,l

âk−q,G+Q,η,α,s,l −
1

2
δq,0δG,0

)

.

(F14)

Note that the expressions in Eqs. (F6) and (F13) are equivalent
up to a redefinition of the chemical potential.

b. Coulomb repulsion potential

To make further approximations and simplify the expres-
sion of ĤI , we need to discuss the exact form of the interaction
potential between the electrons of TSTG. Here we assume that
the TSTG sample is situated midway between a top gate plate
and a bottom gate plate which are a distance ξ away from each
other in the ẑ direction (see Fig. 9). We also assume that the
height of the graphene layer l is given by zl (as measured from
the middle between the two gates). The potential between two
electrons in two layers l and l ′, separated by a distance r in
the plane of the single-layer graphene, is given by summing
over an infinite series of image charges

V l,l ′ (r) =
e2

ǫ

∞
∑

n=−∞

(−1)n

√

r2 + [nξ + zl − zl ′ (−1)n]2
, (F15)

FIG. 9. Gated TSTG experimental setup. We assume that the
TSTG sample is located midway between two gate plates which
are separated by a distance ξ . The three graphene monolayers are
colored according to the twist angle (see also Fig. 1) and are located
at heights zl (for l = 1, 2, 3) measured from the middle between
the two gates (for this geometry, z2 = 0). For the typical experi-
mental setups, the distance between adjacent graphene monolayers
(|z3 − z2| = |z2 − z1| ∼ 3 Å) is much smaller than the gate separation
(ξ ∼ 10 nm).
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with ǫ being the dielectric constant, e denoting the charge
of an electron, and r = |r|. Note that the potential obeys
the symmetry condition from Eq. (F4), as it can be seen by
changing the dummy summation variable n → n(−1)n. The
separation between the top and bottom plates ξ is usually
around 10 nm. On the other hand, the zl is of the same order
as the interlayer separation, which is approximately 3 Å. It is
therefore justified to ignore the zl and zl ′ dependence of the
interaction potential and approximate

V l,l ′ (r) ≈
e2

ǫ

∞
∑

n=−∞

(−1)n

√

r2 + (nξ )2
, (F16)

which affords a significant simplification since the interaction
potential is now independent on the layer indices. We will
henceforth suppress the layer indices and write the interaction
potential as V l,l ′ (r) = V (r), whose Fourier transformation
reads as [37]

V (q) =
2πe2

ǫ

tanh (ξq/2)

q
, (F17)

where q = |q|.

c. Decoupling the interaction Hamiltonian

in mirror-symmetry sectors

As a consequence of the mz symmetry of TSTG in the
absence of displacement field, it is useful to construct relative
density operators corresponding to the mirror-symmetric and
-antisymmetric operators of TSTG, which are respectively
given by

δρ ĉ
G+q =

∑

η,α,s

∑

k∈MBZ
Q∈Q±

(

ĉ
†
k,Q,η,α,s

ĉk−q,G+Q,η,α,s −
1

2
δq,0δG,0

)

,

δρ b̂
G+q =

∑

η,α,s

∑

k∈MBZ
Q∈Qη

(

b̂
†
k,Q,η,α,s

b̂k−q,G+Q,η,α,s −
1

2
δq,0δG,0

)

.

(F18)

Because

δρ ĉ
G+q + δρ b̂

G+q =
3
∑

l=1

δρ l
G+q, (F19)

we can use the independence of the interaction potential
V l,l ′ (r) on the layer indices l and l ′ in Eq. (F13) and show
that, in a similar fashion to the one-particle Hamiltonian, it
also decouples into three different terms

ĤI =
1

2�tot

∑

G∈Q0

∑

q∈MBZ

V (q + G)

×
[

δρ b̂
G+q + δρ ĉ

G+q

][

δρ b̂
−G−q + δρ ĉ

−G−q

]

= ĤI,TBG + ĤI,D + ĤI,TBG−D. (F20)

The first term in Eq. (F20),

ĤI,TBG =
1

2�tot

∑

G∈Q0

∑

q∈MBZ

V (q + G)δρ ĉ
G+qδρ

ĉ
−G−q, (F21)

represents the interaction Hamiltonian that appears in ordi-
nary TBG (see, for example, Ref. [37]),

ĤI,D =
1

2�tot

∑

G∈Q0

∑

q∈MBZ

V (q + G)δρ b̂
G+qδρ

b̂
−G−q (F22)

denotes the interaction between the Dirac cone fermions,
while

ĤI,TBG−D =
1

2�tot

∑

G∈Q0

∑

q∈MBZ

V (q + G)

×
[

δρ ĉ
G+qδρ

b̂
−G−q + δρ b̂

G+qδρ
ĉ
−G−q

]

(F23)

is the interaction between the Dirac cone fermions and the
TBG electrons.

2. Projecting the interaction Hamiltonian

Having derived the TSTG interaction Hamiltonian, we now
turn our attention towards projecting it in the low-energy
modes of the single-particle Hamiltonian Ĥ0. This is done by
writing the relative density operators in Eq. (F20) in the en-
ergy band basis defined in Appendix A 2 and then restricting
the summation to the active TBG bands and the Dirac cone
eigenstates with an energy lower than the gap between the
TBG active and passive bands.

a. Projected density operators

To keep the discussion general, we will consider a generic
energy band basis given by the operators f̂

†
k,n,η,s

with the

corresponding single-particle wave function u
f̂

Qα;nη
(k). The

wave functions u
f̂

Qα;nη
(k) are defined on a certain Q f̂ ,η sub-

lattice (which might depend on the valley η) and obey the
completeness relation

δG,0δα,β =
∑

Q∈Q f̂ ,η

n

u
∗ f̂

Q−Gβ;nη
(k)u f̂

Qα;nη
(k) (F24)

for G ∈ Q0. Equation (F24) can be used to obtain the opera-
tors f̂

†
k,Q,α,η,s

in terms of the energy band basis as

f̂
†
k,Q,α,η,s

=
∑

n

u
∗ f̂

Qα;nη
f̂

†
k,n,η,s

. (F25)

Using Eq. (F25), the relative density operators corresponding
to species f̂

†
k,Q,α,η,s

become

δρ
f̂

G+q =
∑

η,α,s

∑

k∈MBZ

∑

Q∈Q f̂ ,η

∑

m,n

u
∗ f̂

Q−Gα;mη
(k + q)u f̂

Qα;nη
(k)

×
(

f̂
†
k+q,m,η,s

f̂k,n,η,s −
1

2
δq,0δm,n

)

. (F26)

Defining the form-factor matrix

M f̂ ,η
mn (k, q + G) =

∑

α

∑

Q∈Q f̂ ,η

u
∗ f̂

Q−Gα;mη
(k + q)u f̂

Qα;nη
(k)

=
∑

α

∑

Q∈Q f̂ ,η

u
∗ f̂

Qα;mη
(k + q + G)u f̂

Qα;nη
(k),

(F27)
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the expression in Eq. (F26) can be further simplified into

δρ
f̂

G+q =
∑

η, s

m, n

∑

k∈MBZ

M f̂ ,η
mn (k, q + G)

×
(

f̂
†
k+q,m,η,s

f̂k,n,η,s −
1

2
δq,0δm,n

)

. (F28)

It is worth mentioning that owing to the embedding relation
(A23), the form-factor matrix is periodic in the first argument,
i.e.,

M f̂ ,η
mn (k, q + G) = M f̂ ,η

mn (k + G0, q + G) (F29)

for any G0 ∈ Q0. Also, following straightforwardly from their
definition, the form factors obey the Hermiticity condition
[37]

M f̂ ,η
mn (k, q + G) = M∗ f̂ ,η

nm (k − q,−q − G). (F30)

For the mirror-symmetric operators ĉ
†
k,n,η,s

, the projected
density operators are obtained by restricting to the active
bands (i.e., |n|, |m| = 1), yielding

δρ ĉ
G+q =

∑

η,s

∑

k∈MBZ

∑

|n|,|m|=1

M ĉ,η
mn (k, q + G)

×
(

ĉ
†
k+q,m,η,s

ĉk,n,η,s −
1

2
δq,0δm,n

)

. (F31)

The overbar used in the definition of δρ ĉ
G+q emphasizes the

fact that it represents the projected, rather than the unpro-
jected, relative density operator.

On the other hand, for the mirror-antisymmetric operators
b̂

†
k,n,η,s

, the summation is also constrained to include only the
energy band basis operators with momenta k ∈ Aη, where

Aη =
3
⋃

i=1

Ai
η, (F32)

in addition to requiring |n|, |m| = 1. The corresponding pro-
jected density operators are given by

δρ b̂
G+q =

∑

η,s

∑

k
k, k+q∈Aη

∑

|n|,|m|=1

M b̂,η
mn (k, q + G)

×
(

b̂
†
k+q,m,η,s

b̂k,n,η,s −
1

2
δq,0δm,n

)

. (F33)

However, due to the periodicity of the energy band opera-
tors from Eq. (A24) and the periodicity of the form factors
from Eq. (F29), we can change the disconnected region of
summation for the k momenta to an equivalent connected
region which is defined by the conditions |k − ηq1|, |k + q −
ηq1| � �. To make this restricted summation more apparent,
we can rewrite the density operators in terms of δk = k − ηq1

as

δρ b̂
G+q =

∑

η,s

∑

δk

∑

|n|,|m|=1

M b̂,η
mn (δk + ηq1, q + G)

×
(

b̂
†
δk+ηq1+q,m,η,sb̂δk+ηq1,n,η,s −

1

2
δq,0δm,n

)

.

(F34)

In Eq. (F34) and in the following equations involving the form
factors of the mirror-antisymmetryic operators, the constraint
|δk|, |δk + q| � � is implicit.

b. Projected interaction Hamiltonian

Following the notation of Ref. [37], we define a set of new
operators

O
f̂

q,G =
√

V (q + G) δρ f̂
G+q (F35)

for f̂ † = b̂†, ĉ†. This allows us to write the projected interac-
tion Hamiltonian HI in terms of the Oĉ

q,G and Ob̂
q,G operators,

corresponding to the original mirror-symmetric and mirror-
anitsymmetric operators. It simply reads as

HI =
1

2�tot

∑

q∈MBZ

∑

G∈Q0

(

Oĉ
−q,−G + Ob̂

−q,−G

)(

Oĉ
q,G + Ob̂

q,G

)

.

(F36)

Because O
† f̂

q,G = O
f̂

−q,−G, for any f̂ = b̂, ĉ, the projected inter-
action Hamiltonian from Eq. (F36) is a positive-semidefinite
operator.

It is important to note that only the Dirac fermions in a
fraction of the MBZ (i.e., b̂

†
k,n,η,s

with n = ±1 and k ∈ Aη)
contribute to the interaction Hamiltonian. Using this fact, the
expression for HI given in Eq. (F36) can be further simplified.
To see this, one must first note that the projected relative
density operators corresponding to the mirror-antisymmetric
sector can be equivalently written as

δρ b̂
G+q =

∑

η,α,s

∑

i, j

∑

k∈Ai
η

(k−q)∈A
j
η

(

b̂
†
k,ηqi,α,s,l

b̂k−q,ηq j ,α,s,l

× δG,η(q j−qi ) −
1

2
δq,0δG,0

)

, (F37)

where we are summing over those values of k in MBZ where
both k and k − q lie inside the zone Aη. For q inside the first
MBZ, for a small enough momentum cutoff �, it follows that

δρ b̂
G+q vanishes, unless G = 0, a statement which we prove

below.
We start with the conditions k ∈ Ai

η and (k − q) ∈ A
j
η

which imply that

|k − ηqi| � � and |k + q − ηq j | � �. (F38)

Writing q as

q = (k + q − ηq j ) − (k − ηqi ) + η(q j − qi )

= (k + q − ηq j ) − (k − ηqi ) + G, (F39)

we can find that its modulus squared is given by

q2 = (k + q − ηq j )
2 + (k − ηqi )

2 + G2

+ 2G · (k + q − ηq j ) − 2G · (k − ηqi )

− 2(k − ηqi ) · (k + q − ηq j ). (F40)
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Using the inequalities

2G · (k + q − ηq j ) � −2G�,

−2G · (k − ηqi ) � −2G�,

−2(k − ηqi ) · (k + q − ηq j ) � −2�2,

(F41)

we deduce that

q2
� G2 − 4G� − 2�2. (F42)

Given that q ∈ MBZ, q2 � 1 and so Eq. (F42) can only be
satisfied if G2 − 4G� − 2�2 � 1, which is trivially satisfied
if G = 0. However, if G is the smallest nonzero reciprocal
lattice vector G =

√
3, the inequality G2 − 4G� − 2�2 � 1

can only be satisfied for � � 2 −
√

3. Since we assume the
cutoff � to be smaller than 0.2 (for typical values of �,
see Fig. 8), this leads to a contradiction. We thus find that

the projected density operators δρ b̂
G+q vanish unless G = 0.

In addition, the condition G = 0 implies that we must have

|q| � � for δρ b̂
G+q to be nonvanishing. Consequently, we

find that

Ob̂
q,G = Ob̂

q,0δG,0. (F43)

The projected interaction Hamiltonian can thus be written
as

HI = HI,TBG + HI,D + HI,TBG−D, (F44)

where the first term denotes the same projected interaction
Hamiltonian that appears in ordinary TBG [37],

HI,TBG =
1

2�tot

∑

G∈Q0

∑

q∈MBZ

Oĉ
−q,−GOĉ

q,G, (F45)

while

HI,D =
1

2�tot

∑

q∈MBZ

Ob̂
−q,0Ob̂

q,0 (F46)

represents the projected interaction Hamiltonian for the Dirac
fermions. Additionally,

HI,TBG−D =
1

2�tot

∑

q∈MBZ

(

Oĉ
−q,0Ob̂

q,0 + Ob̂
−q,0Oĉ

q,0

)

(F47)

denotes the projected interaction between the TBG and Dirac
electrons.

3. Gauge fixing the Oĉ
q,G and Ob̂

q,G operators

The operators Oĉ
q,G have been introduced in Ref. [37]

for TBG, where the procedure used to gauge fix their form
(through the form factors M ĉ) was also thoroughly explained.
Here, we will focus on gauge fixing the Ob̂

q,G operators

(through the form factors M b̂) and briefly summarize the re-
sults of the gauge-fixing procedure used in Ref. [37] for the
Oĉ

q,G operators.

a. Gauge fixing the M b̂(k, q + Q) form factors

To fix the exact form of the coefficients M b̂,η
mn (k, q + G),

for |m|, |n| = 1, we impose a series of constraints arising from
the symmetries defined in Appendix B, as well as from the
specific gauge choices of Appendix C. More precisely, for
each δk-preserving symmetry with a δk-independent sewing
matrix, the form factors will satisfy certain commutation re-
lations, similarly to the single-particle terms in Appendix E 2.
The resulting parametrizations of the form factors will prove
instrumental in deriving the continuous symmetries of the
many-body TSTG Hamiltonian in Appendix G.

(1) The C2zT symmetry, which has the δk-independent
sewing matrix B

C2zT

b̂
= ζ 0τ 0, imposes the real condition.

Namely, we must have that

M b̂,η
mn (δk + ηq1, q + G) =

∑

α

∑

Q∈Qη

u∗b̂
Q−Gα;mη(δk + ηq1 + q)ub̂

Qα;nη(δk + ηq1)

=
∑

Q∈Qη

∑

α,η1,η2

[

u†b̂
mη1

(δk + η1q1 + q)
[

D†(C2zT )
]

ηη1

]

Q−Gα
[[D(C2zT )]ηη2

ub̂
nη2

(δk + η2q1)]Qα

=
∑

α, η1, η2
m′, n′

[

B
†C2zT

b̂

]

mη,m′η1

∑

Q∈Qη1

ub̂
Q−Gα;m′η1

(δk + η1q1 + q)u∗b̂
Qα;n′η2

(δk + η2q1)
[

B
C2zT

b̂

]

n′η2,nη
. (F48)

It then follows that the form-factor matrix elements are real:

M b̂,η
mn (δk + ηq1, q + G) =

∑

m′,n′,η′

(ζ 0τ 0)mη,m′η′M
∗b̂,η′

m′n′ (δk + η′q1, q + G)(ζ 0τ 0)n′η′,nη = M∗b̂,η
mn (δk + ηq1, q + G). (F49)

(2) Due to the chiral transformation C, which has the δk-independent sewing matrix BC

b̂
= ζ yτ z in the pair of bands n = ±1,

we must have

M b̂,η
mn (δk + ηq1, q + G) =

∑

α

∑

Q∈Qη

u∗b̂
Q−Gα;mη(δk + ηq1 + q)ub̂

Qα;nη(δk + ηq1)

=
∑

Q∈Qη

∑

α,η1,η2

[

u†b̂
mη1

(δk + η1q1 + q)
[

D†(C)
]

ηη1

]

Q−Gα
[[D(C)]ηη2

ub̂
nη2

(δk + η2q1)]Qα

=
∑

α, η1, η2
m′, n′

[

B
†C

b̂

]

mη,m′η1

∑

α

∑

Q∈Qη1

u∗b̂
Q−Gα;m′η1

(δk + η1q1 + q)ub̂
Qα;n′η2

(δk + η2q1)
[

BC

b̂

]

n′η2,nη
, (F50)
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which can be rewritten as

M b̂,η
mn (δk + ηq1, q + G) =

∑

m′,n′,η′

(ζ yτ z )mη,m′η′M
b̂,η′

m′n′ (δk + η′q1, q + G)(ζ yτ z )n′η′,nη. (F51)

(3) Finally, the combination transformation C2zL which has a δk-independent sewing matrix B
C2zL

b̂
= ζ yτ y imposes the

following condition on the form-factor matrices:

M b̂,η
mn (δk + ηq1, q + G) =

∑

α

∑

Q∈Qη

u∗b̂
Q−Gα;mη(δk + ηq1 + q)ub̂

Qα;nη(δk + ηq1)

=
∑

Q∈Qη

∑

α,η1,η2

[

u†b̂
mη1

(δk + η1q1 + q)
[

D†(C2zL)
]

ηη1

]

Q−Gα
[[D(C2zL)]ηη2

ub̂
nη2

(δk + η2q1)]Qα

=
∑

α, η1, η2
m′, n′

[

B
†C2zL

b̂

]

mη,m′η1

∑

Q∈Qη1

u∗b̂
Q−Gα;m′η1

(δk + η1q1 + q)ub̂
Qα;n′η2

(δk + η2q1)
[

B
C2zL

b̂

]

n′η2,nη
, (F52)

which requires that

M b̂,η
mn (δk + ηq1, q + G) =

∑

m′,n′,η′

(ζ yτ y)mη,m′η′M
b̂,η′

m′n′ (δk + η′q1, q + G)(ζ yτ y)n′η′,nη. (F53)

As a direct product of 2 × 2 matrices in valley and spin space, we can generically parametrize the form factors as

M b̂,η
mn (δk + ηq1, q + G) =

∑

a∈{0, x, y, z}
d∈{0, z}

(ζ aτ d )mη,nηα
b̂
ad (δk, q + G), (F54)

where only d = 0, z are allowed since M b̂,η
mn (δk + ηq1, q + G) is diagonal in valley space, and αcd (δk, q + G) represent generic

complex functions. At the same time, Eqs. (F49), (F51), and (F53) impose a series of constraints on the form factors which
restrict the number of terms allowed in the parametrization from Eq. (F54). More precisely, the matrix M b̂(δk + ηq1, q + G)
turns out to be a sum of only two terms

M b̂,η
mn (δk + ηq1, q + G) = (ζ 0τ 0)mη,nηα

b̂
0 (δk, q + G) + i(ζ yτ 0)mη,nηα

b̂
1(δk, q + G), (F55)

where α j (δk, q + G) (for j = 0, 1) represent two real func-
tions.

b. Gauge fixing the M ĉ(k, q + Q) form factors

The gauge fixing of the form factors for to the mirror-
symmetric sector was fully detailed in Ref. [37]. The
single-particle wave functions uĉ

Qα;nη(k) at a given k point
can be related by the k-independent sewing matrices of the
combined symmetry operators C2zP and C2zT . The gauge
fixing from Eq. (C3) restricts the form factors to the following
parametrization in the band and valley subspaces [37]:

M ĉ(k, q + G)

= ζ 0τ 0αĉ
0(k, q + G) + ζ xτ zαĉ

1(k, q + G)

+ iζ yτ 0αĉ
2(k, q + G) + ζ zτ zαĉ

3(k, q + G), (F56)

where αĉ
j (k, q + G) (for j = 0, 1, 2, 3) are all real function.

Furthermore, in the (first) chiral limit w0 = 0, the single-
particle wave functions uĉ

Qα;nη(k) at a given k can additionally
be related by the k-independent sewing matrix of the chiral
symmetry operator C. This implies that the form factors will
be further restricted to the parametrization

M ĉ(k, q + G) = ζ 0τ 0αĉ
0(k, q + G) + iζ yτ 0αĉ

2(k, q + G).
(F57)

4. Hartree-Fock potential in the projected

interaction Hamiltonian

In Appendix F 2, we have derived the projected interaction
Hamiltonian starting from Eq. (F20) without first normal or-
dering. We also noted in Appendix F 1 that the normal-ordered
and the non-normal-ordered forms of the unprojected inter-
action Hamiltonian only differ by a chemical potential term.
Here, we show that the projected interaction Hamiltonian HI

is not equivalent to its normal ordered form up to a redefinition
of the chemical potential. Instead, the projected interaction
Hamiltonian is the sum between its normal-ordered form :HI :
and a single-particle Hamiltonian HHF, which can be under-
stood as the electron potential from the remote bands which
are projected away:

HI =:HI : +HHF + const. (F58)

We will now show that HHF can be thought of as an effec-
tive background Hartree-Fock potential. The proof is similar
to the one given in Ref. [37] for TBG. However, because we
are dealing with two fermion flavors, we will find it easier
to employ a different notation that treats the single-particle
Dirac cone and TBG eigenstates on equal footing. We let f̂

†
i

denote the creation operator for some TBG or Dirac cone
energy band eigenstate (ĉ†

k,n,η,s
or b̂

†
k,n,η,s

) with corresponding
single-particle energy ǫi. The momentum, band, valley, spin,
and fermion flavor are encoded in the index i, which is chosen
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such that ǫi � ǫ j for any i < j. Projecting the TSTG Hamil-
tonian becomes equivalent to only considering those fermion
operators whose single-particle energy lies within a certain
interval.

When written in terms of the new operators, the projected
interaction Hamiltonian is given by

HI =
1

2�tot

∑

i, j, m, n

N−�i, j, m, n�N+
G∈Q0

[

M∗G
i j

(

f̂
†
j f̂i −

1

2
δi j

)

× MG
mn

(

f̂ †
m f̂n −

1

2
δmn

)

]

, (F59)

where the matrix elements MG
i j are defined as

MG
i j =

√

V (q + G)M f̂ ,η
mn (k, q + G)δs1,s2δη,η′ , (F60)

where the indices i and j are such that f̂
†
i = f̂

†
k+q,m,η,s1

and

f̂ j = f̂k,n,η′,s2 , G is a reciprocal vector. The projection in
Eq. (F59) is implemented by restricting the fermion indices to
lie between N− and N+, which respectively denote the index
of the lowest- and highest-energy single-particle eigenstates
included in the projection. We note that the unprojected in-
teraction Hamiltonian has the same form as Eq. (F59), but
without imposing any restrictions on the fermion indices

ĤI =
1

2�tot

∑

i, j, m, n

G∈Q0

[

M∗G
i j

(

f̂
†
j f̂i −

1

2
δi j

)

× MG
mn

(

f̂ †
m f̂n −

1

2
δmn

)]

. (F61)

We will now derive the Hartree-Fock contribution arising
from ĤI by fully filling all the energy eigenstates indexed by
i, with i � N . The filled states give rise to a mean field

〈 f̂
†
i f̂ j〉 = �(N − i)δi j, (F62)

where �(x) is the Heaviside step function. The Hartree term
arising from this filling is simply given by

ĤN
H =

1

2�tot

∑

i, m, n

G∈Q0

(

M∗G
ii MG

mn f̂ †
m f̂n

+ M∗G
mnM

G
ii f̂ †

n f̂m

)

�(N − i). (F63)

The mean field from Eq. (F62) also gives rise to a quadratic
Fock contribution

ĤN
F = −

1

2�tot

∑

i, m, n

G∈Q0

(

M∗G
im MG

in f̂ †
m f̂n

+ M∗G
ni M

G
mi f̂ †

m f̂n

)

�(N − i). (F64)

We now project the Hartree-Fock contributions arising from
the partial filling from Eq. (F62) to the active energy modes
with fermion indices between N− and N+ (i.e., the TSTG

eigenstates in which we project the interaction Hamiltonian).
The resulting Hartree and Fock potentials read as

HN
H =

1

2�tot

∑

i, m, n

N−�m, n�N+
G∈Q0

(

M∗G
ii MG

mn f̂ †
m f̂n

+ M∗G
mnM

G
ii f̂ †

n f̂m

)

�(N − i), (F65)

HN
F = −

1

2�tot

∑

i, m, n

N−�m, n�N+
G∈Q0

(

M∗G
im MG

in f̂ †
m f̂n

+ M∗G
mi M

G
ni f̂ †

n f̂m

)

�(N − i). (F66)

We now turn our attention to the projected interaction
Hamiltonian HI , which can be written as the sum between
its normal-ordered form, a quadratic part, and a constant, as
seen in Eq. (F58). The quadratic part (which has been denoted
HHF = HI− :HI : in anticipation of the results of this section)
can be written (up to a constant term) as

HHF =
1

4�tot

∑

i, m, n

N−�i, m, n�N+
G∈Q0

[(

M∗G
ii MG

mn − M∗G
im MG

in

)

f̂ †
m f̂n

+
(

M∗G
mnM

G
ii − M∗G

mi M
G
ni

)

f̂ †
n f̂m

]

. (F67)

Employing Eqs. (F65) and (F66), we find that the quadratic
part is indeed an effective background Hartree-Fock potential
arising from the bands that have been projected away, i.e.,

HHF = 1
2

[

H
N+
H + H

N+
F −

(

H
N−
H + H

N−
F

)]

, (F68)

thus completing the proof. Finally, we note that the effec-
tive Hartree-Fock potential HHF is crucial in proving the
charge-conjugation symmetry of the projected many-body
Hamiltonian in Appendix G 1.

APPENDIX G: SYMMETRIES OF THE PROJECTED

MANY-BODY HAMILTONIAN

In this Appendix, we discuss the symmetries of the many-
body TSTG projected Hamiltonian H defined in Eq. (56) in
different physically relevant limits. We commence by showing
that H inherits a spatial many-body charge-conjugation sym-
metry from the single-graphene layers. Next, we show that
the many-body TSTG projected Hamiltonian enjoys enlarged
continuous symmetries in various limits of interest. In the ab-
sence of displacement field, the fermion flavors corresponding
to the two different mirror-symmetry sectors are decoupled
at the single-particle level allowing us to discuss the contin-
uous symmetries of each flavor independently. We conclude
this Appendix by showing that a nonzero displacement field
breaks the symmetries of the system to the trivial U(2) × U(2)
spin-valley rotation symmetry.

1. Spatial many-body charge-conjugation symmetry

The full projected Hamiltonian H = H0 + HI has a spatial
many-body charge-conjugation symmetry P , which ensures
that all the physical phenomena are particle-hole symmetric
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about the charge neutral point. Here, we define this spatial
many-body charge-conjugation symmetry transformation and
prove explicitly that, up to a constant, it leaves the projected
TSTG many-body Hamiltonian invariant.

a. Definition

We define the spatial many-body charge-conjugation
operation P as the combined antiunitary single-particle trans-
formation

U ≡ mzC2xC2zT P (G1)

followed by an interchange between fermion creation and
annihilation operators. Its action on the energy band operators
f̂ = b̂, ĉ

P f̂
†
k,n,η,s

P−1 =
∑

n′,η′

[

BU

f̂
(k)
]

n′η′,nη
f̂−C2xk,n′,η′,s,

P f̂k,n,η,sP
−1 =

∑

n′,η′

[

BU

f̂
(k)
]∗

n′η′,nη
f̂

†
−C2xk,n′,η′,s. (G2)

The representation matrices for the combined single-particle
transformation U obey

D f̂ (U ) = D f̂ (C2xP)D f̂ (mz )D f̂ (C2zT ), (G3)

and, as required by Eqs. (B2) and (B4) to (B6), are given
explicitly by

[Dĉ(U )]Q′η′β,Qηα = δQ′,−C2xQδη′,ηδβ,αζQ,

[Db̂(U )]Q′η′β,Qηα = −δQ′,−C2xQδη′,ηδβ,αζQ. (G4)

At the same time, the corresponding sewing matrices can be
found from the relation

BU

f̂
(k) = B

C2xP

f̂
(k)Bmz

f̂
(k)BC2zT

f̂
(k), (G5)

which, under the gauge fixing of Appendix C, can be simpli-
fied into

BU
ĉ (k) = B

C2xP
ĉ (k), BU

b̂
(k) = −B

C2xP

b̂
(k). (G6)

In what follows, we will not explicitly fix the sewing matrices
for the U transformation, but note that since C2xP anticom-
mutes with the single-particle Hamiltonians ĤTBG and ĤD and
preserves the valley, the sewing matrices must have the form

[

BU

f̂
(k)
]

n′η′,nη
= δη,η′δ−n,n′e

iφ
f̂ ,U

n′η′ (k)
, (G7)

where φ
f̂ ,U

n′η′ (k) are gauge-dependent phases, which we will
leave unspecified. We now proceed to show that the various
terms of the many-body projected TSTG Hamiltonian are
symmetric under the spatial many-body charge-conjugation
symmetry P .

b. Spatial many-body charge-conjugation symmetry

of HTBG and HD

The single-particle TBG and Dirac cone Hamiltonians an-
ticommute with the antiunitary transformation U , namely,

{U , Ĥ f̂ } = 0, (G8)

for f̂ = ĉ, b̂. For the sake of brevity, in Eq. (G8), we have
introduced the notation Ĥ f̂ = ĤTBG for f̂ = ĉ and Ĥ f̂ = ĤD

for f̂ = b̂. It follows that the single-particle band energies
obey

ǫ f̂
n,η(k) = −ǫ

f̂
−n,η(−C2xk). (G9)

The action of the spatial many-body charge-conjugation oper-
ator P on the projected single-particle contributions HTBG and
HD defined in eqs. (33) and (34) is then given by

PH f̂ P
−1 =

∑

k

∑

|n|=1
η, s

ǫ f̂
n,η(k)

∑

n′
1, η

′
1

n′
2, η

′
2

[

BU

f̂
(k)
]

n′
1η

′
1,nη

f̂−C2xk,n′
1,η

′
1,s

[

BU

f̂
(k)
]∗

n′
2η

′
2,nη

f̂
†
−C2xk,n′

2,η
′
2,s

= −
∑

k

∑

|n|=1
η, s

ǫ
f̂
−n,η(−C2xk) f̂−C2xk,−n,η,s f̂

†
−C2xk,−n,η,s

= H f̂ −
∑

k

∑

|n|=1
η, s

ǫ f̂
n,η(k) = H f̂ , (G10)

thus proving that HTBG and HD are invariant under P .

c. Spatial many-body charge-conjugation symmetry of H
(b̂ĉ)
U and H

(b̂)
U

The displacement field overlap matrix governing the projected displacement field Hamiltonian H
(b̂ĉ)

U matrix obeys

Nη
mn(δk) =

U

2

∑

α

ub̂∗
ηq1α;mη(kη )uĉ

ηq1α;nη(kη )

= −
U

2

∑

α,η1,η2

[

u†b̂
mη1

(kη )
[

D†b̂(U )
]

ηη1

]

ηq1α

[[

Dĉ(U )
]

ηη2
uĉ

nη2
(kη )

]

ηq1α

= −
U

2

∑

α

m′, n′

[

B
†U
b̂

(kη )
]

mη,m′η
ub̂

ηq1α;m′η(−C2xkη )u∗ĉ
ηq1α;n′η(−C2xkη )

[

BU
ĉ (kη )

]

n′η,nη

= −
∑

m′,n′

[

B
†U
b̂

(kη )
]

mη,m′η
N

∗η

m′n′ (−C2xδk)
[

BU
ĉ (kη )

]

n′η,nη
, (G11)
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where kη = δk + ηq1. Rearranging Eq. (G11) we find that

∑

m,n

[

BU

b̂
(kη )

]

m′η,mη
Nη

mn(δk)
[

B
†U
ĉ (kη )

]

nη,n′η
= −N

∗η

m′n′ (−C2xδk). (G12)

Equation (G12), together with the reality condition (E10), implies that the projected displacement field Hamiltonian stays
invariant under the spatial many-body charge-conjugation transformation, i.e.,

PH
(b̂ĉ)

U P−1 =
∑

η, s

|n|, |m|=1
|δkη|��

∑

|n′|,|m′|=1

{[

BU

b̂
(kη )

]

m′η,mη
Nη

mn(δk)
[

B
†U
ĉ (kη )

]

nη,n′η
b̂−C2xkη,m′,η,sĉ

†
−C2xkη,n′,η,s

+ H.c.
}

=
∑

η, s

|n|, |m|=1
|δk|��

[

N∗η
mn(−C2xδk)ĉ†

−C2xkη,n,η,s
b̂−C2xkη,m,η,s + H.c.

]

= H
(b̂ĉ)

U . (G13)

Similarly to Eq. (G11), the displacement field perturbation matrix obeys

Bη
nm(k) =

U 2

4

3
∑

i=1

∑

α,β

u∗ĉ
ηqiα;nη(k)[(k − ηqi ) · σ

η]αβuĉ
ηqiβ;mη(k)

|k − ηqi|2

= −
U 2

4

3
∑

i=1

∑

α, β

η1, η2

[

u†ĉ
nη1

(k)[D†ĉ(U )]ηη1

]

ηq′
iα

[(k′ − ηq′
i ) · σ

η]∗αβ

[

[Dĉ(U )]ηη2
uĉ

mη2
(k)
]

ηq′
iβ

|k′ − ηq′
i|2

= −
U 2

4

3
∑

i=1

∑

α, β

m′, n′

[

B
†U
ĉ (k)

]

mη,m′η

uĉ
ηqiα;m′η(k′)[(k′ − ηqi ) · σ

η]∗αβu∗ĉ
ηqiβ;n′η(k′)

|k′ − ηqi|2
[

BU
ĉ (k)

]

n′η,nη
, (G14)

where, for the sake of brevity, we have introduced the notation k′ ≡ −C2xk. Rearranging Eq. (G14) we find that

∑

m,n

[

BU
ĉ (k)

]

m′η,mη
Bη

mn(k)
[

B
†U
ĉ (k)

]

nη,n′η
= −B

∗η

m′n′ (−C2xk). (G15)

By tracing over the band and valley indices in Eq. (G15), we find that

∑

|n|=1
η

Bη
nn(k) = −

∑

|n|=1
η

B∗η
nn (−C2xk). (G16)

Together with the reality condition in Eq. (E16), Eq. (G15) the second-order projected displacement field Hamiltonian is invariant
under the many-body charge-conjugation transformation, up to a constant

PH
(ĉ)

U P−1 =
∑

η, s

|n|, |m|=1

∑

k∈Cη

|n′|, |m′|=1

[

BU
ĉ (k)

]

m′η,mη
Bη

mn(k)
[

B
†U
ĉ (k)

]

nη,n′η
ĉ−C2xk,m′,η,sĉ

†
−C2xk,n′,η,s

= −
∑

η, s

|n|, |m|=1

∑

k∈Cη

B∗η
mn(−C2xk)ĉ−C2xk,m,η,sĉ

†
−C2xk,n,η,s

=
∑

η, s

|n|, |m|=1

∑

k∈Cη

Bη
nm(k)ĉ†

k,n,η,s
ĉk,m,η,s −

∑

η, s

|n|=1

∑

k∈Cη

Bη
nn(k) = H

(ĉ)
U . (G17)

d. Spatial many-body charge-conjugation symmetry of HI

To keep the discussion general, we consider the form - matrix defined in Eq. (F27) corresponding to a certain energy
band creation operator f̂ † = b̂†, ĉ†. As a consequence of the antiunitary single-particle transformation U , the form factors
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obey

M f̂ ,η
mn (k, q + G) =

∑

α

∑

Q∈Q f̂ ,η

u
∗ f̂

Q−Gα;mη
(k + q)u f̂

Qα;nη
(k)

=
∑

Q∈Q f̂ ,η

∑

α,η1,η2

[

u† f̂
mη1

(k + q)
[

D
†
f̂
(U )
]

ηη1

]

Q−Gα
[[D f̂ (U )]ηη2 u f̂

nη2
(k)]Qα

=
∑

α, η1, η2
m′, n′

[

B
†U
f̂

(k + q)
]

mη,m′η1

∑

Q∈Qη1

u
f̂

Q−G′α;m′η1
(k′ + q′)u∗ f̂

Qα;n′η2
(k′)
[

BU

f̂
(k)
]

n′η2,nη
, (G18)

where for simplicity we have defined k′ ≡ −C2xk, q′ ≡ −C2xq, and G′ ≡ −C2xG. Written in matrix form Eq. (G18) reads as

M f̂ (k, q + G) = B
†U
f̂

(k + q)M∗ f̂ (k′, q′ + G′)BU

f̂
(k), (G19)

which after rearranging and using the Hermiticity condition in Eq. (F30) leads to

BU

f̂
(k + q)M f̂ (k, q + G)B†U

f̂
(k) = M∗ f̂ (k′, q′ + G′) = MT f̂ (k′ + q′,−q′ − G′). (G20)

Together with the definitions from Eq. (G2), Eq. (G20) and the reality of the form factors derived in Appendix F 3 imply that the

action of the spatial many-body charge-conjugation operation P on the O
f̂

q,G operators is given by

PO
f̂

q,GP
−1 =

√

V (q + G)
∑

η, s

m, n

∑

k

M f̂ ,η
mn (k, q + G)

(

P f̂
†
k+q,m,η,s f̂k,n,η,sP

−1 −
1

2
δq,0δm,n

)

=
√

V (q + G)
∑

η, s

m, n

∑

k

[

BU

f̂
(k + q)M f̂ (k, q + G)B†U

f̂
(k)
]

mη,nη

(

f̂k′+q′,m,η,s f̂
†
k′,n,η,s

−
1

2
δq,0δm,n

)

= −
√

V (q′ + G′)
∑

η, s

m, n

∑

k

M f̂ ,η
nm (k′ + q′,−q′ − G′)

(

f̂
†
k′,n,η,s

f̂k′+q′,m,η,s −
1

2
δq′,0δm,n

)

= −
√

V (−q′ − G′)
∑

η, s

m, n

∑

k

M f̂ ,η
nm (k,−q′ − G′)

(

f̂
†
k−q′,n,η,s

f̂k,m,η,s −
1

2
δq′,0δm,n

)

= −O
f̂

−C2xq,−C2xG. (G21)

In Eq. (G21), the momentum k runs over the entire MBZ for
f̂ = ĉ, and is restricted by the condition k, k + q ∈ Aη when
f̂ = b̂. In deriving Eq. (G21), we have also used the invariance
of the interaction potential under rotations in the plane of
the graphene layers. Taken together with the definition of the
projected interaction Hamiltonain in Eq. (F36), Eq. (G21)
implies that HI is symmetric under the spatial many-body
charge-conjugation symmetry

[P, HI ] = 0. (G22)

Finally, combining Eqs. (G10), (G13), (G17), and (G22) im-
plies that the projected fully interacting TSTG Hamiltonian
H = H0 + HI is indeed invariant under the spatial many-body
charge-conjugation symmetry P:

PHP−1 = H. (G23)

2. Brief review of the U(4) group

As it is featured extensively in this paper, this sections
presents a brief review of the the U(4) group and corre-
sponding Lie algebra. The U(N ) group is defined by all the

N × N unitary matrices V satisfying V†V = 1N , where 1N

is the identity matrix. The matrices V are generated by all
the linearly independent N × N Hermitian matrices, thus, the
total number of generators is N2. In particular, for the U(4)
group, the 16 generators can be represented by the tensor
product of two sets of 2 × 2 identity and Pauli matrices τ a

and sa as

sab
0 = τ asb, (G24)

where a, b = 0, x, y, z. We denote their commutation relations
as

[

sab
0 , scd

0

]

=
∑

e, f

f ab,cd
e f

s
e f

0 , (G25)

with f ab,cd
e f

of the U(4) group’s Lie algebra.

3. Continuous symmetries of the mirror-antisymmetric

sector in the U = 0 case

In Eq. (B9) we have written the generators of the
[U(2) × U(2)]b̂ symmetry of the single-particle Hamiltonian
ĤD. Here we show that in the absence of displacement
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DUMITRU CĂLUGĂRU et al. PHYSICAL REVIEW B 103, 195411 (2021)

field, this symmetry is not only inherited by the mirror-
antisymmetric sector of the projected many-body TSTG
Hamiltonian, but is also promoted to an enlarged continuous
group. To keep the notation general, we introduce the opera-
tors

Sab

b̂
=
∑

|δk|��

m, η, s

n, η′, s′

(

sab

b̂

)

mηs,nη′s′ b̂
†
δk+ηq1,m,η,s

b̂δk+η′q1,n,η′,s′ , (G26)

representing the generators of the continuous symmetry group
of the mirror-antisymmetric sector (which, for the moment,
we denote by G). For a certain pair of indices a and b, the

Hermitian matrices sab

b̂
defined in the band, valley, and spin

subspaces form the representation of the Lie algebra of the
group G. The definition in Eq. (G26) is the projected form of
Eq. (B9) that has been further generalized to include arbitrary
band, valley, and spin rotations. It is worth mentioning that
the generators Sab

b̂
always preserve the relative momentum δk,

but change the actual momentum k when the matrix sab

b̂
is not

diagonal in valley space.
We first investigate the symmetries of the Ob̂

q,G operators
defined in Eq. (F35) which govern the Coulomb interaction of
the Dirac cone fermions. The commutator of the generators
Sab

b̂
with the Ob̂

q,G operators is given by

[

Sab

b̂
, Ob̂

q,G

]

=
∑

|δk|��

m, n, η, s

n′, η′, s′

√

V (q + G)
[(

sab

b̂

)

nηs,mη′s′M
b̂,η′

mn′ (δk + η′q1, q + G)

− M b̂,η
nm (δk + ηq1, q + G)

(

sab

b̂

)

mηs,n′η′s′

](

b̂
†
δk+ηq1+q,n,η,s

b̂δk+η′q1,n′,η′,s′
)

. (G27)

Similarly, the commutator between the generators Sab

b̂
and the

Hamiltonian HD reads as
[

Sab

b̂
, HD

]

=
∑

|δk|��

n, η, s

n′, η′, s′

[

sab

b̂
, ǫ b̂(δk)

]

nηs,n′η′s′

×
(

b̂
†
δk+ηq1,n,η,s

b̂δk+η′q1,n′,η′,s′
)

, (G28)

where ǫ b̂(δk) is the Dirac energy band matrix introduced in
Appendix E 1. Aided by the parametrization of Eq. (F55), we
find that the maximal set of generators that commute with the
Ob̂

q,G operators is given by

Sab

b̂± =
∑

|δk|��

m, η, s

n, η′, s′

(

sab

b̂±

)

mηs,nη′s′ b̂
†
δk+ηq1,m,η,s

b̂δk+η′q1,n,η′,s′ , (G29)

where a, b = 0, x, y, z and the representation matrices are de-
fined by

sab

b̂± = 1
2 (ζ 0 ± ζ y)τ asb (a, b = 0, x, y, z). (G30)

In this form, the generators obey
[

Sab

b̂±, Scd

b̂±

]

=
∑

e, f

f ab,cd
e f

S
e f

b̂±, (G31)

[

Sab

b̂+, Scd

b̂−

]

= 0, (G32)

where f ab,cd
e f

represent the structure factors of the U(4) group.

The symmetry group of the Ob̂
q,G operators is thus seen to

be [U(4) × U(4)]b̂, where the 16 generators Sab

b̂+ generate one

U(4) group, while the 16 generators Sab

b̂− generate the other
one.

The large Fermi velocity of the single-particle Dirac cone
Hamiltonian Ĥ implies that there is no flat limit for the
mirror-antisymmetric sector. Otherwise stated, neglecting the

single-particle projected contribution HD is not a physically
valid approximation. Even though the Ob̂

q,G operators govern-
ing the interaction of the Dirac fermions are invariant under
[U(4) × U(4)]b̂, the introduction of the kinetic term reduces
the symmetry to [U(4)]b̂. Using the parametrized form of the
single-particle band energy from Eq. (E8), we see that only
a subset of the 32 generators from Eq. (G29) commute with
the HD. More precisely, we find that [Sab

b̂+ + Sab

b̂−, HD] = 0,

while [Sab

b̂+ − Sab

b̂−, HD] �= 0, for any a, b = 0, x, y, z. We can
therefore conclude that the mirror-antisymmetric sector of
TSTG in the absence of displacement field enjoys an enhanced
[U(4)]b̂ symmetry for which the representation matrices are
given by

sab

b̂
= sab

b̂+ + sab

b̂− = ζ 0τ asb (a, b = 0, x, y, z), (G33)

and correspond to full U(4) valley-spin rotations in the mirror-
antisymmetric sector. The generators Sab

b̂
of this [U(4)]b̂

symmetry obey the algebra defined in Eq. (G25):
[

Sab

b̂
, Scd

b̂

]

=
∑

e, f

f ab,cd
e f

S
e f

b̂
. (G34)

4. Continuous symmetries of the mirror-symmetric

sector in the U = 0 case

In the absence of displacement field, the continuous sym-
metries of the mirror-symmetric sector of the projected
many-body TSTG Hamiltonian are determined by the single-
particle projected Hamiltonian HTBG, as well as by the Oĉ

q,G

operators governing the Coulomb interaction of the TBG
fermions. The symmetries of HTBG and Oĉ

q,G have been de-
rived and extensively discussed in Refs. [26–28,37], in the
context of ordinary TBG.

Here, we will summarize the continuous symmetries of the
mirror-symmetric sector of TSTG in the absence of displace-
ment field and only briefly justify them from the parametrized
forms of HTBG and Oĉ

q,G, which were summarized, respec-
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tively, in Appendices E 1 and F 3 b. We refer the reader to
Ref. [37] for the detailed proofs.

In analogy with the generators Sab

b̂
, we define the operators

Sab
ĉ =

∑

k∈MBZ
m, η, s

n, η′, s′

(

sab
ĉ

)

mηs,nη′s′ ĉ
†
k,m,η,s

ĉk,n,η′,s′ , (G35)

representing the generators of the various continuous symme-
try groups pertaining to the mirror-symmetric sector of the
TSTG many-body projected Hamiltonian. The commutators
of the Oĉ

q,G operators with the generators in Eq. (G35) are
given by
[

Sab
ĉ , Oĉ

q,G

]

=
∑

k∈MBZ
n, η, s

n′, η′, s′

√

V (q + G)
[

sab
ĉ , M ĉ(k, q + G)

]

nηs,n′η′s′

× (ĉ†
k+q,n,η,s

ĉk,n′,η′,s′ ). (G36)

Similarly, the commutator between the generators defined in
Eq. (G35) and the single-particle projected TBG Hamiltonian
reads as
[

Sab
ĉ , HTBG

]

=
∑

k ∈ MBZ
n, η, s

n′, η′, s′

[

sab
ĉ , ǫ ĉ(k)

]

nηs,n′η′s′ (ĉ
†
k,n,η,s

ĉk,n′,η′,s′ ),

(G37)

where ǫ ĉ(k) is the TBG energy band matrix introduced in
Appendix E 1.

We will now investigate the implications of Eqs. (G36)
and (G37) for the continuous symmetry group of the TBG
fermions. It is worth noting that unlike the symmetry genera-
tors corresponding to the mirror-antisymmetric sector defined
in Eq. (G26), the generators related to the mirror-symmetric
operators introduced in Eq. (G35) leave the momentum in-
variant.

a. [U(4) × U(4)]ĉ symmetry in the (first) chiral-flat limit

In the (first) chiral-flat limit we approximate the TBG
bands as being perfectly flat, completely neglecting the
projected single-particle contribution HTBG and therefore dis-
regarding Eq. (G37). Assuming that the (first) chiral condition
holds (w0 = 0), the Oĉ

q,G operators can be parametrized
according to Eq. (F57), and so Eq. (G36) determines the
maximal set of commuting generators to be

Sab
ĉ± =

∑

k∈MBZ
m, η, s

n, η′, s′

(

sab
ĉ±
)

mηs,nη′s′ ĉ
†
k,m,η,s

ĉk,n,η′,s′ , (G38)

where a, b = 0, x, y, z and the representation matrices are de-
fined by

sab
ĉ± = 1

2 (ζ 0 ± ζ y)τ asb (a, b = 0, x, y, z). (G39)

The generators in Eq. (G38) obey the commutation relations
[

Sab
ĉ±, Scd

ĉ±
]

=
∑

e, f

f ab,cd
e f

S
e f

ĉ±, (G40)

where f ab,cd
e f

represent the structure factors of the U(4) group

and [Sab
ĉ+, Scd

ĉ−] = 0. The symmetry group TBG fermions is
thus seen to be [U(4) × U(4)]ĉ [28,37], where the 16 genera-
tors Sab

ĉ+ generate one U(4) group, while the 16 generators Sab
ĉ−

generate the other one. Using the Chern band basis defined
in Appendix C 3, we can also write the generators of the
[U(4) × U(4)]ĉ symmetry as

Sab
ĉ± =

∑

k∈MBZ
η, s

η′, s′

(τ asb)ηs,η′s′ d̂
†
k,±1,η,s

d̂k,±1,η′,s′ . (G41)

b. [U(4)]ĉ symmetry in the nonchiral-flat limit

Compared with the chiral-flat limit from Appendix G 4 a,
in the nonchiral-flat limit we also neglect the dispersion of
the TBG active bands, but we do not assume the (first) chiral
condition (w0 = 0) to hold. As such, the Oĉ

q,G operators can be
parametrized according to Eq. (F56), resulting in the maximal
set of symmetry generators being given by Eq. (G35) for
a, b = 0, x, y, z and having the representation matrices

s0b
ĉ = ζ 0τ 0sb, sxb

ĉ = ζ yτ xsb, s
yb

ĉ = ζ yτ ysb, szb
ĉ = ζ 0τ zsb,

(G42)

where b = 0, x, y, z. The generators in Eq. (G35) obey the
commutation relation

[

Sab
ĉ , Scd

ĉ

]

=
∑

e, f

f ab,cd
e f

S
e f

ĉ , (G43)

where f ab,cd
e f

represent the structure factors of the U(4) group.
The symmetry group pertaining to the TBG fermions in the
nonchiral-flat limit is thus seen to be [U(4)]ĉ [26,37].

c [U(4)]ĉ symmetry in the chiral-nonflat limit

In the (first) chiral-nonflat limit, we assume the chiral
condition to hold, but, in contrast to Appendices G 4 b and
G 4 c, we also account for the nonzero dispersion of the
TBG active bands. The parametrizations of HTBG and Oĉ

q,G

given, respectively, in Eqs. (E7) and (F57) restrict the max-
imal set of generators in Eq. (G35) through Eqs. (G36) and
(G37). The representation matrices in the chiral-nonflat limit
read as

sab
ĉ = ζ 0τ asb (a, b = 0, x, y, z), (G44)

implying that the generators from Eq. (G35) obey the Lie
algebra of the U(4) group

[

Sab
ĉ , Scd

ĉ

]

=
∑

e, f

f ab,cd
e f

S
e f

ĉ . (G45)

As in the nonchiral-flat limit, the symmetry group of the TBG
fermions in the chiral-nonflat limit is given by [U(4)]ĉ [37],
but with different generators.

d. [U(2) × U(2)]ĉ symmetry in the nonchiral-nonflat case

When neither the chiral condition holds, nor the dispersion
of the TBG active bands is ignored, the parametrizations
of HTBG and Oĉ

q,G given, respectively, in Eqs. (F35) and
(F56) imply that the TBG fermions have only the trivial
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[U(2) × U(2)]ĉ symmetry, associated with the spin-charge
conservation per valley. The generators of this symmetry are
given by Eq. (G35) for a = 0, z and b = 0, x, y, z, with the
corresponding representation matrices being given by

s0b
ĉ = ζ 0τ 0sb, szb

ĉ = ζ 0τ zsb (G46)

for b = 0, x, y, z.

5. Symmetries of the projected many-body TSTG

Hamiltonian with displacement field

The perpendicularly applied displacement field couples the
mirror-symmetry sector fermions at the single-particle level

through the contribution H
(b̂ĉ)

U . As a result of this, the TBG and
Dirac fermion flavors can no longer be independently rotated
in the spin, valley, or band subspaces. We will therefore define
the operators

Sab =
∑

m, η, s

n, η′, s′

[

∑

|δk|��

(

sab

b̂

)

mηs,nη′s′ b̂
†
δk+ηq1,m,η,s

b̂δk+η′q1,n,η′,s′ +
∑

k∈MBZ

(

sab
ĉ

)

mηs,nη′s′ ĉ
†
k,m,η,s

ĉk,n,η′,s′

]

, (G47)

representing the generators of the continuous symmetry group of the TSTG Hamiltonian. In appearance, Eq. (G47) represents
just the sum of Eqs. (G26) and (G35). Note, however, that we have not made any assumptions regarding the Hermitian matrices
sab

b̂
and sab

ĉ , other than the fact that they provide isomorphic representations for the Lie algebra of the continuous symmetry group
of the many-body projected TSTG Hamiltonian.

The advantage of the notation in Eq. (G47) is that the commutation of the generators Sab with the various terms of the
many-body projected TSTG Hamiltonian can be readily computed from Eqs. (G27), (G28), (G36), and (G37):

[

Sab, Ob̂
q,G

]

=
∑

|δk|��

m, n, η, s

n′, η′, s′

√

V (q + G)
[(

sab

b̂

)

nηs,mη′s′M
b̂,η′

mn′ (δk + η′q1, q + G)

− M b̂,η
nm (δk + ηq1, q + G)

(

sab

b̂

)

mηs,n′η′s′

]

(b̂†
δk+ηq1+q,n,η,s

b̂δk+η′q1,n′,η′,s′ ), (G48)

[

Sab, Oĉ
q,G

]

=
∑

k∈MBZ
n, η, s

n′, η′, s′

√

V (q + G)
[

sab
ĉ , M ĉ(k, q + G)

]

nηs,n′η′s′ (ĉ
†
k+q,n,η,s

ĉk,n′,η′,s′ ), (G49)

[

Sab, HD

]

=
∑

|δk|��

n, η, s

n′, η′, s′

[

sab

b̂
, ǫ b̂(δk)

]

nηs,n′η′s′ (b̂
†
δk+ηq1,n,η,s

b̂δk+η′q1,n′,η′,s′ ), (G50)

[

Sab, HTBG
]

=
∑

k∈MBZ
n, η, s

n′, η′, s′

[

sab
ĉ , ǫ ĉ(k)

]

nηs,n′η′s′ (ĉ
†
k,n,η,s

ĉk,n′,η′,s′ ). (G51)

To Eqs. (G48) to (G51), we add the commutators of Sab with the projected displacement field contributions H
(b̂ĉ)

U and H
(ĉ)

U :
[

Sab, H
(b̂ĉ)

U

]

=
∑

|δk|��

n, η, s

n′, η′, s′

{[

sab

b̂
N (δk)

]

nηs,n′η′s′ b̂
†
δk+ηq1,n,η,s

ĉδk+η′q1,n′,η′,s′ −
[

N (δk)sab
ĉ

]

nηs,n′η′s′ b̂
†
δk+ηq1,n,η,s

ĉδk+ηq1,n′,η′,s′

−
[

sab

b̂
N (δk)

]∗
nηs,n′η′s′ ĉ

†
δk+η′q1,n′,η′,s′ b̂δk+ηq1,n,η,s +

[

N (δk)sab
ĉ

]∗
nηs,n′η′s′ ĉ

†
δk+ηq1,n′,η′,s′ b̂δk+ηq1,n,η,s

}

, (G52)

[

Sab, H
(ĉ)

U

]

=
∑

n, η, s

n′, η′, s′







∑

k∈Cη′

[

sab
ĉ B(k)

]

nηs,n′η′s′ ĉ
†
k,n,η,s

ĉk,n′,η′,s′ −
∑

k∈Cη

[

B(k)sab
ĉ

]

nηs,n′η′s′ ĉ
†
k,n,η,s

ĉk,n′,η′,s′







. (G53)

The careful analysis of the valley indices in Eq. (G52) reveals that the commutator [Sab, H
(b̂ĉ)

U ] can only vanish if sab

b̂
is diagonal

in valley space, as the generators from Eq. (G47) do not otherwise preserve crystal momentum. Additionally, the vanishing
of the commutator in Eq. (G52) in conjunction with the parametrizations in Appendix E 2 imply that sab

b̂
= sab

ĉ . Therefore, the
generators of continuous symmetries in the presence of displacement field are restricted to the form

Sab =
∑

m, η, s

n, η′, s′

[

∑

|δk|��

(sab)mηs,nη′s′ b̂
†
δk+ηq1,m,η,s

b̂δk+η′q1,n,η′,s′ +
∑

k∈MBZ

(sab)mηs,nη′s′ ĉ
†
k,m,η,s

ĉk,n,η′,s′

]

, (G54)
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which was obtained from Eq. (G47) by setting sab

b̂
= sab

ĉ = sab. We additionally require that the representation matrices sab are
diagonal in valley subspace, but we make no restriction on their action in the band or spin subspaces.

Irrespective of the physical limit of TSTG we consider, the generators from Eq. (G54) must at least obey the commutation
relations in Eqs. (G48) to (G50). These are enough to restrict the possible representation matrices to the set

s0b = ζ 0τ 0sb, szb = ζ 0τ zsb (G55)

for b = 0, x, y, z since they must be diagonal in valley space. The corresponding generators obtained from Eq. (G54) will also
obey the commutation relations in Eqs. (G51) to (G53) under any of the physical limits considered. We conclude that the
introduction of displacement field breaks the symmetries of the many-body projected TSTG Hamiltonian to the trivial spin-valley
U(2) × U(2) rotation symmetry.
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